On the Temporal Tweezing of Cavity Solitons

被引:0
|
作者
Rossi, Julia [1 ,2 ]
Chandramouli, Sathyanarayanan [3 ]
Carretero-Gonzalez, Ricardo [1 ,2 ]
Kevrekidis, Panayotis G. [3 ]
机构
[1] San Diego State Univ, Nonlinear Dynam Syst Grp, Computat Sci Res Ctr, San Diego, CA 92182 USA
[2] San Diego State Univ, Dept Math & Stat, San Diego, CA 92182 USA
[3] Univ Massachusetts, Dept Math & Stat, Amherst, MA 01003 USA
关键词
Optical tweezers; Cavity solitons; Complex Ginzburg-Landau equation; Lugiato-Lefever equation; Non-conservative Lagrangian formulation; SLOW LIGHT; DYNAMICS; MANIPULATION; MODULATION;
D O I
10.1007/s44198-024-00193-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Motivated by the work of Jang et al., Nat Commun 6:7370 (2015), where the authors experimentally tweeze cavity solitons in a passive loop of optical fiber, we study the amenability to tweezing of cavity solitons as the properties of a localized tweezer are varied. The system is modeled by the Lugiato-Lefever equation, a variant of the complex Ginzburg-Landau equation. We produce an effective, localized, trapping tweezer potential by assuming a Gaussian phase-modulation of the holding beam. The potential for tweezing is then assessed as the total (temporal) displacement and speed of the tweezer are varied, and corresponding phase diagrams are presented. As the relative speed of the tweezer is increased we find two possible dynamical scenarios: successful tweezing and release of the cavity soliton. We also deploy a non-conservative variational approximation (NCVA) based on a Lagrangian description which reduces the original dissipative partial differential equation to a set of coupled ordinary differential equations for the cavity soliton parameters. We illustrate the ability of the NCVA to accurately predict the separatrix between successful and failed tweezing. This showcases the versatility of the NCVA to provide a low-dimensional description of the experimental realization of the temporal tweezing.
引用
收藏
页数:27
相关论文
共 50 条
  • [1] On the temporal tweezing of cavity solitons
    Rossi, Julia
    Chandramouli, Sathyanarayanan
    Carretero-González, Ricardo
    Kevrekidis, Panayotis G.
    arXiv, 2023,
  • [2] Temporal tweezing of light through the trapping and manipulation of temporal cavity solitons
    Jae K. Jang
    Miro Erkintalo
    Stéphane Coen
    Stuart G. Murdoch
    Nature Communications, 6
  • [3] Temporal tweezing of light through the trapping and manipulation of temporal cavity solitons
    Jang, Jae K.
    Erkintalo, Miro
    Coen, Stephane
    Murdoch, Stuart G.
    NATURE COMMUNICATIONS, 2015, 6
  • [4] Temporal cavity solitons
    Rachel Won
    Nature Photonics, 2010, 4 : 490 - 490
  • [5] Intensity trapping of temporal cavity solitons
    Wang, Y.
    Garbin, B.
    Oppo, G. -L.
    Coen, S.
    Erkintalo, M.
    Murdoch, S. G.
    2017 CONFERENCE ON LASERS AND ELECTRO-OPTICS EUROPE & EUROPEAN QUANTUM ELECTRONICS CONFERENCE (CLEO/EUROPE-EQEC), 2017,
  • [6] Dissipative temporal solitons in a laser cavity
    Grelu, Ph.
    Grapinet, M.
    Soto-Crespo, J. M.
    Akhmediev, N.
    ICONO 2005: NONLINEAR SPACE-TIME DYNAMICS, 2006, 6255
  • [7] Temporal tweezing of light
    Jang, Jae K.
    Erkintalo, Miro
    Murdoch, Stuart G.
    Coen, Stephane
    2014 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2014,
  • [8] Observations of spatiotemporal instabilities of temporal cavity solitons
    Anderson, Miles
    Leo, Francois
    Coen, Stephane
    Erkintalo, Miro
    Murdoch, Stuart G.
    OPTICA, 2016, 3 (10): : 1071 - 1074
  • [9] TEMPORAL CAVITY SOLITONS Buffering optical data
    Firth, William
    NATURE PHOTONICS, 2010, 4 (07) : 415 - 417
  • [10] Universal mechanism for the binding of temporal cavity solitons
    Wang, Yadong
    Leo, Francois
    Fatome, Julien
    Erkintalo, Miro
    Murdoch, Stuart G.
    Coen, Stephane
    OPTICA, 2017, 4 (08): : 855 - 863