On the Temporal Tweezing of Cavity Solitons

被引:0
作者
Rossi, Julia [1 ,2 ]
Chandramouli, Sathyanarayanan [3 ]
Carretero-Gonzalez, Ricardo [1 ,2 ]
Kevrekidis, Panayotis G. [3 ]
机构
[1] San Diego State Univ, Nonlinear Dynam Syst Grp, Computat Sci Res Ctr, San Diego, CA 92182 USA
[2] San Diego State Univ, Dept Math & Stat, San Diego, CA 92182 USA
[3] Univ Massachusetts, Dept Math & Stat, Amherst, MA 01003 USA
基金
美国国家科学基金会;
关键词
Optical tweezers; Cavity solitons; Complex Ginzburg-Landau equation; Lugiato-Lefever equation; Non-conservative Lagrangian formulation; SLOW LIGHT; DYNAMICS; MANIPULATION; MODULATION;
D O I
10.1007/s44198-024-00193-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Motivated by the work of Jang et al., Nat Commun 6:7370 (2015), where the authors experimentally tweeze cavity solitons in a passive loop of optical fiber, we study the amenability to tweezing of cavity solitons as the properties of a localized tweezer are varied. The system is modeled by the Lugiato-Lefever equation, a variant of the complex Ginzburg-Landau equation. We produce an effective, localized, trapping tweezer potential by assuming a Gaussian phase-modulation of the holding beam. The potential for tweezing is then assessed as the total (temporal) displacement and speed of the tweezer are varied, and corresponding phase diagrams are presented. As the relative speed of the tweezer is increased we find two possible dynamical scenarios: successful tweezing and release of the cavity soliton. We also deploy a non-conservative variational approximation (NCVA) based on a Lagrangian description which reduces the original dissipative partial differential equation to a set of coupled ordinary differential equations for the cavity soliton parameters. We illustrate the ability of the NCVA to accurately predict the separatrix between successful and failed tweezing. This showcases the versatility of the NCVA to provide a low-dimensional description of the experimental realization of the temporal tweezing.
引用
收藏
页数:27
相关论文
共 51 条
[1]  
Ablowitz M.J., 2004, DISCRETE CONTINUOUS
[2]   The world of the complex Ginzburg-Landau equation [J].
Aranson, IS ;
Kramer, L .
REVIEWS OF MODERN PHYSICS, 2002, 74 (01) :99-143
[3]   OBSERVATION OF A SINGLE-BEAM GRADIENT FORCE OPTICAL TRAP FOR DIELECTRIC PARTICLES [J].
ASHKIN, A ;
DZIEDZIC, JM ;
BJORKHOLM, JE ;
CHU, S .
OPTICS LETTERS, 1986, 11 (05) :288-290
[4]   ACCELERATION AND TRAPPING OF PARTICLES BY RADIATION PRESSURE [J].
ASHKIN, A .
PHYSICAL REVIEW LETTERS, 1970, 24 (04) :156-&
[5]  
Boyd RW, 2006, OPT PHOTONICS NEWS, V17, P18, DOI 10.1364/OPN.17.4.000018
[6]   EXPERIMENTAL-OBSERVATION OF OPTICALLY TRAPPED ATOMS [J].
CHU, S ;
BJORKHOLM, JE ;
ASHKIN, A ;
CABLE, A .
PHYSICAL REVIEW LETTERS, 1986, 57 (03) :314-317
[7]   Manipulation of vortices by localized impurities in Bose-Einstein condensates [J].
Davis, M. C. ;
Carretero-Gonzalez, R. ;
Shi, Z. ;
Law, K. J. H. ;
Kevrekidis, P. G. ;
Anderson, B. P. .
PHYSICAL REVIEW A, 2009, 80 (02)
[8]   OPTICAL PUSH BROOM [J].
DESTERKE, CM .
OPTICS LETTERS, 1992, 17 (13) :914-916
[9]   Traveling and stationary intrinsic localized modes and their spatial control in electrical lattices [J].
English, L. Q. ;
Palmero, F. ;
Sievers, A. J. ;
Kevrekidis, P. G. ;
Barnak, D. H. .
PHYSICAL REVIEW E, 2010, 81 (04)
[10]   Phase and intensity control of dissipative Kerr cavity solitons [J].
Erkintalo, Miro ;
Murdoch, Stuart G. ;
Coen, Stephane .
JOURNAL OF THE ROYAL SOCIETY OF NEW ZEALAND, 2022, 52 (02) :149-167