Scalable quantum neural networks by few quantum resources

被引:1
作者
Pastorello, Davide [1 ,3 ]
Blanzieri, Enrico [2 ,3 ]
机构
[1] Alma Mater Studiorum Univ Bologna, Dept Math, Piazza Porta San Donato 5, I-40126 Bologna, Italy
[2] Univ Trento, Dept Informat Engn & Comp Sci, Via Sommar 9, I-38123 Povo, Trento, Italy
[3] Trento Inst Fundamental Phys & Applicat, Via Sommar 14, I-38123 Povo, Trento, Italy
关键词
Neural networks; quantum machine learning; scalable quantum computing;
D O I
10.1142/S0219749924500187
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This paper focuses on the construction of a general parametric model that can be implemented executing multiple swap tests over few qubits and applying a suitable measurement protocol. The model turns out to be equivalent to a two-layer feedforward neural network which can be realized combining small quantum modules. The advantages and the perspectives of the proposed quantum method are discussed.
引用
收藏
页数:16
相关论文
共 18 条
[1]  
Wittek P., Quantum Machine Learning, (2014)
[2]  
Schuld M., Petruccione F., Machine Learning with Quantum Computers, (2021)
[3]  
Pastorello D., Concise Guide to Quantum Machine Learning, (2023)
[4]  
Buhrman H., Cleve R., Watrous J., de Wolf R., Phys. Rev. Lett, 87, (2001)
[5]  
Fiorentino M., Kim T., Wong F. N. C., Phys. Rev. A, 72, (2005)
[6]  
Kang M. S., Et al., Sci. Rep, 9, (2019)
[7]  
Zhao J., Zhang Y.-H., Shao C.-P., Wu Y.-C., Guo G.-C., Guo G.-P., Phys. Rev. A, 100, (2019)
[8]  
Li P., Wang B., Neural Netw, 130, (2020)
[9]  
Hornik K., Stinchcombe M., White H., Neural Netw, 2, 5, (1989)
[10]  
Livni R., Shalev-Shwartz S., Shamir O., On the computational efficiency of training neural networks, NIPS’14: Proc. 27th Int. Conf. Neural Information Processing Systems, pp. 855-863, (2014)