Enhancing 360-Degree Video Streaming via Selective Inpainting for Bandwidth Optimization

被引:0
作者
Bendre, Pratik Abhijeet [1 ]
Kumar, Shashwat [2 ]
Franklin, Antony A. [1 ]
机构
[1] Indian Inst Technol Hyderabad, Dept Comp Sci & Engn, Sangareddy, India
[2] Rakuten Mobile Inc, Tokyo, Japan
来源
2024 IEEE 21ST CONSUMER COMMUNICATIONS & NETWORKING CONFERENCE, CCNC | 2024年
关键词
D O I
10.1109/CCNC51664.2024.10454800
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
360-degree video streaming is an emerging technology that immerses viewers in the dynamic environment of a video. However, streaming such videos over wireless networks faces challenges due to their substantial data demands. This research introduces an innovative approach aimed at mitigating the data requirements of 360-degree video streaming. Our proposed method leverages video inpainting to reconstruct select segments of the 360-degree video. To ensure a seamless integration of video inpainting without compromising the user's quality of experience, we devise a mechanism to identify tiles suitable for reconstruction with minimal impact on video quality. Empirical findings demonstrate that the proposed solution markedly reduces the data demand of 360-degree video streaming while maintaining satisfactory video quality.
引用
收藏
页码:835 / 838
页数:4
相关论文
共 11 条
  • [1] Advancing User Quality of Experience Using Viewport Archives in Viewport-Aware Tile-Based 360-Degree Video Streaming
    Dziubinski, Kiana
    Bandai, Masaki
    [J]. 2021 IEEE INTERNATIONAL WORKSHOP TECHNICAL COMMITTEE ON COMMUNICATIONS QUALITY AND RELIABILITY (CQR 2021), 2021,
  • [2] Towards Bandwidth Efficient Adaptive Streaming of Omnidirectional Video over HTTP Design, Implementation, and Evaluation
    Graf, Mario
    Timmerer, Christian
    Mueller, Christopher
    [J]. PROCEEDINGS OF THE 8TH ACM MULTIMEDIA SYSTEMS CONFERENCE (MMSYS'17), 2017, : 261 - 271
  • [3] Le Feuvre J., 2007, PROC 15 ACM INT C MU, P1009, DOI [10.1145/1291233.1291452, DOI 10.1145/1291233.1291452]
  • [4] VR is on the Edge: How to Deliver 360° Videos in Mobile Networks
    Mangiante, Simone
    Klas, Guenter
    Navon, Amit
    Zhuang GuanHua
    Ju Ran
    Silva, Marco Dias
    [J]. VR/AR NETWORK '17: PROCEEDINGS OF THE 2017 WORKSHOP ON VIRTUAL REALITY AND AUGMENTED REALITY NETWORK, 2017, : 30 - 35
  • [5] Telea A., 2004, Journal of Graphics Tools, V9, P23, DOI 10.1080/10867651.2004.10487596
  • [6] Tomar S., 2006, LINUX J, V2006, P10
  • [7] scikit-image: image processing in Python']Python
    van der Walt, Stefan
    Schonberger, Johannes L.
    Nunez-Iglesias, Juan
    Boulogne, Francois
    Warner, Joshua D.
    Yager, Neil
    Gouillart, Emmanuelle
    Yu, Tony
    [J]. PEERJ, 2014, 2
  • [8] Kvazaar: Open-Source HEVC/H.265 Encoder
    Viitanen, Marko
    Koivula, Ari
    Lemmetti, Ari
    Yla-Outinen, Arttu
    Vanne, Jamb
    Hamalainen, Timo D.
    [J]. MM'16: PROCEEDINGS OF THE 2016 ACM MULTIMEDIA CONFERENCE, 2016, : 1179 - 1182
  • [9] DeepVR: Deep Reinforcement Learning for Predictive Panoramic Video Streaming
    Xiao, Gongwei
    Wu, Muhong
    Shi, Qian
    Zhou, Zhi
    Chen, Xu
    [J]. IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING, 2019, 5 (04) : 1167 - 1177
  • [10] Gaze Prediction in Dynamic 360° Immersive Videos
    Xu, Yanyu
    Dong, Yanbing
    Wu, Junru
    Sun, Zhengzhong
    Shi, Zhiru
    Yu, Jingyi
    Gao, Shenghua
    [J]. 2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 5333 - 5342