Numerical discretization for Fisher-Kolmogorov problem with nonlocal diffusion based on mixed Galerkin BDF2 scheme

被引:0
|
作者
Manimaran, J. [1 ]
Shangerganesh, L. [2 ]
Zaky, M. A. [3 ]
Akguel, A. [4 ,5 ]
Hendy, A. S. [6 ]
机构
[1] Vellore Inst Technol, Sch Adv Sci, Div Math, Chennai Campus, Chennai 600127, Tamil Nadu, India
[2] Natl Inst Technol Goa, Dept Appl Sci, Farmagudi 403401, Goa, India
[3] Imam Mohammad Ibn Saud Islamic Univ IMSIU, Coll Sci, Dept Math & Stat, Riyadh, Saudi Arabia
[4] Lebanese Amer Univ, Dept Comp Sci & Math, Beirut, Lebanon
[5] Surt Univ, Art & Sci Fac, Dept Math, TR-56100 Surt, Turkiye
[6] Ural Fed Univ, Inst Nat Sci & Math, Dept Computat Math & Comp Sci, 19 Mira St, Ekaterinburg 620002, Russia
关键词
Finite element Galerkin method; BDF2; scheme; Nonlocal diffusion; Extended Fisher-Kolmogorov equation; FINITE-ELEMENT-METHOD; PARTIAL-DIFFERENTIAL-EQUATIONS; SPLINE COLLOCATION METHODS; INVASION; MODEL;
D O I
10.1016/j.apnum.2024.02.018
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Nonlocal problems involving fourth-order terms pose several difficulties such as numerical discretization and its related convergences analysis. In this paper, the well-posedness of the extended Fisher-Kolmogorov equation with nonlocal diffusion is first analyzed using the FaedoGalerkin technique and the classical compactness arguments. Moreover, we adopt a BDF2 scheme for time discretization and a mixed Galerkin scheme for spatial discretization. Then, we derive the optimal order convergence rates of the fully discrete system. Finally, some numerical simulations and convergence results are provided to confirm the theoretical results and the accuracy of the proposed scheme.
引用
收藏
页码:145 / 158
页数:14
相关论文
共 3 条
  • [1] Sharp L2 Norm Convergence of Variable-Step BDF2 Implicit Scheme for the Extended Fisher-Kolmogorov Equation
    Li, Yang
    Sun, Qihang
    Feng, Naidan
    Liu, Jianjun
    JOURNAL OF FUNCTION SPACES, 2023, 2023
  • [2] A convex splitting BDF2 method with variable time-steps for the extended Fisher-Kolmogorov equation
    Sun, Qihang
    Ji, Bingquan
    Zhang, Luming
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2022, 114 : 73 - 82
  • [3] On the effectiveness and precision of BDF2-discontinuous Galerkin scheme for nonlinear nonlocal reaction-diffusion models
    Manimaran, J.
    Shangerganesh, L.
    Hariharan, S.
    Basuodan, Reem M.
    Hendy, A. S.
    Zaky, Mahmoud A.
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2025, 76 (01):