Evaluating the latest trends of Industry 4.0 based on LDA topic model

被引:2
作者
Ozyurt, Ozcan [1 ]
Ozkose, Hakan [2 ]
Ayaz, Ahmet [3 ]
机构
[1] Karadeniz Tech Univ, Fac Technol, Dept Software Engn, TR-61830 Trabzon, Turkiye
[2] Bartin Univ, Dept Management Informat Syst, Fac Econ & Adm Sci, TR-74110 Bartin, Turkiye
[3] Karadeniz Tech Univ, Digital Transformat Off, TR-61080 Trabzon, Turkiye
关键词
Industry; 4.0; Topic modeling; Latent Dirichlet allocation; Trend analysis; Text mining; BIBLIOMETRIC ANALYSIS; DIGITAL TRANSFORMATION; BIG DATA; INTERNET; THINGS; LOGISTICS; FUTURE; FIELD;
D O I
10.1007/s11227-024-06247-x
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
This study employs the Latent Dirichlet allocation method, a topic modeling technique, to reveal hidden patterns in Industry 4.0 research. The dataset comprises 8584 articles published in the Scopus database from 2011 to the end of 2022. The analysis categorized the articles into 12 distinct topics. The three most prominent topics identified are "Smart Cyber-Physical Systems," "Digital Transformation and Knowledge Management" and "Data Science in Energy," respectively. The findings from this topic modeling provide a comprehensive overview for researchers in the field of Industry 4.0, offering valuable insights into current trends and potential future research directions.
引用
收藏
页码:19003 / 19030
页数:28
相关论文
共 97 条
[21]   Impact of Industry 4.0 on Sustainability-Bibliometric Literature Review [J].
Ejsmont, Krzysztof ;
Gladysz, Bartlomiej ;
Kluczek, Aldona .
SUSTAINABILITY, 2020, 12 (14)
[22]   A hybrid model of Internet of Things and cloud computing to manage big data in health services applications [J].
Elhoseny, Mohamed ;
Abdelaziz, Ahmed ;
Salama, Ahmed S. ;
Riad, A. M. ;
Muhammad, Khan ;
Sangaiah, Arun Kumar .
FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2018, 86 :1383-1394
[23]   Knowledge management and digital business transformation [J].
Erceg, Vanja ;
Zoranovic, Tihomir .
STRATEGIC MANAGEMENT, 2022, 27 (02) :57-63
[24]   Development of prediction models for next-day building energy consumption and peak power demand using data Mining techniques [J].
Fan, Cheng ;
Xiao, Fu ;
Wang, Shengwei .
APPLIED ENERGY, 2014, 127 :1-10
[25]  
Ferreira Jr P. C. D., 2022, Handbook of Research on SDGs for Economic Development, Social Development, and Environmental Protection, P113
[26]  
Forgionne G, 2011, ENCY DECISION MAKING, P892
[27]   Industry 4.0 ten years on: A bibliometric and systematic review of concepts, sustainability value drivers, and success determinants [J].
Ghobakhloo, Morteza ;
Fathi, Masood ;
Iranmanesh, Mohammad ;
Maroufkhani, Parisa ;
Morales, Manuel E. .
JOURNAL OF CLEANER PRODUCTION, 2021, 302
[28]   Finding scientific topics [J].
Griffiths, TL ;
Steyvers, M .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 :5228-5235
[29]  
Gurcan F, 2019, 1 INT INF SOFTW ENG, DOI [10.1109/UBMYK48245.2019.8965457, DOI 10.1109/UBMYK48245.2019.8965457]
[30]   Business Intelligence Strategies, Best Practices, and Latest Trends: Analysis of Scientometric Data from 2003 to 2023 Using Machine Learning [J].
Gurcan, Fatih ;
Ayaz, Ahmet ;
Dalveren, Gonca Gokce Menekse ;
Derawi, Mohammad .
SUSTAINABILITY, 2023, 15 (13)