Exploring deep learning and machine learning for novel red phosphor materials

被引:0
|
作者
Novita, Mega [1 ]
Chauhan, Alok Singh [2 ]
Ujianti, Rizky Muliani Dwi [3 ]
Marlina, Dian [4 ]
Kusumo, Haryo [5 ]
Anwar, Muchamad Taufiq [6 ]
Piasecki, Michal [7 ]
Brik, Mikhail G. [7 ,8 ,9 ,10 ,11 ,12 ]
机构
[1] Graduate Program of Science Education, Universitas PGRI Semarang, Jl Sidodadi Timur No. 24, Central Java, Semarang,50232, Indonesia
[2] School of Computer Applications and Technology, Galgotias University, Plot No. 2, Yamuna Expy, Sector 17A, Uttar Pradesh, Greater Noida,203201, India
[3] Department of Food Engineering, Faculty of Engineering and Informatics, Universitas PGRI Semarang, Jl Sidodadi Timur No. 24, Central Java, Semarang,50232, Indonesia
[4] Department of Pharmacy, Faculty of Engineering anad Informatics, Universitas Setia Budi, Jl. Letjen Sutoyo, Mojosongo, Kec. Jebres, Jawa Tengah, Kota Surakarta,57127, Indonesia
[5] Faculty of Vocational Studies, Universitas Sains dan Teknologi Komputer, Jl. Majapahit 605, Central Java, Semarang,50192, Indonesia
[6] Automotive Industry Information System, Politeknik STMI Jakarta, Jl. Letjen Suprapto No. 26, Central Jakarta, Jakarta,10510, Indonesia
[7] Department of Theoretical Physics, Jan Dlugosz University, Czestochowa, Poland
[8] Centre of Excellence for Photoconversion, Vinča Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
[9] School of Optoelectronic Engineering and CQUPT-BUL Innovation Institute, Chongqing University of Posts and Telecommunications, Chongqing, China
[10] Academy of Romanian Scientists, Ilfov Str. No. 3, Bucharest, Romania
[11] Institute of Physics, University of Tartu, W. Ostwald Str. 1, Tartu, Estonia
[12] Institute of Solid State Physics, University of Latvia, Kengaraga 8, Riga,LV-1063, Latvia
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [41] Access and benefit sharing biological materials for machines: Artificial intelligence, machine learning and deep learning
    Lawson, Charles
    Englezos, Elizabeth
    Rourke, Michelle
    PLANTS PEOPLE PLANET, 2025,
  • [42] Perspectives on the Impact of Machine Learning, Deep Learning, and Artificial Intelligence on Materials, Processes, and Structures Engineering
    Dennis M. Dimiduk
    Elizabeth A. Holm
    Stephen R. Niezgoda
    Integrating Materials and Manufacturing Innovation, 2018, 7 : 157 - 172
  • [43] Perspectives on the Impact of Machine Learning, Deep Learning, and Artificial Intelligence on Materials, Processes, and Structures Engineering
    Dimiduk, Dennis M.
    Holm, Elizabeth A.
    Niezgoda, Stephen R.
    INTEGRATING MATERIALS AND MANUFACTURING INNOVATION, 2018, 7 (03) : 157 - 172
  • [44] MACHINE LEARNING CLASS WITH AUTOMATIC LEARNING MATERIALS
    Lai, L. L.
    Chan, C. L.
    PROCEEDINGS OF 2014 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS (ICMLC), VOL 1, 2014, : 263 - 270
  • [45] Exploring Generalization in Deep Learning
    Neyshabur, Behnam
    Bhojanapalli, Srinadh
    McAllester, David
    Srebro, Nathan
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 30 (NIPS 2017), 2017, 30
  • [46] Optimized Multimetal Sensitized Phosphor for Enhanced Red Up-Conversion Luminescence by Machine Learning
    Yang, Fan
    Wang, Yanxing
    Jiang, Xue
    Lin, Bi
    Lv, Ruichan
    ACS COMBINATORIAL SCIENCE, 2020, 22 (05) : 285 - 296
  • [47] Exploring the Potential of Deep-Learning and Machine-Learning in Dual-Band Antenna Design
    Gadhafi, Rida
    Copiaco, Abigail
    Himeur, Yassine
    Afsari, Kiyan
    Mukhtar, Husameldin
    Ghanem, Khalida
    Mansoor, Wathiq
    IEEE OPEN JOURNAL OF THE COMPUTER SOCIETY, 2024, 5 : 566 - 577
  • [48] Exploring Ensembling in Deep Learning
    A. Bruno
    M. Martinelli
    D. Moroni
    Pattern Recognition and Image Analysis, 2022, 32 : 519 - 521
  • [49] Exploring Ensembling in Deep Learning
    Bruno, A.
    Martinelli, M.
    Moroni, D.
    PATTERN RECOGNITION AND IMAGE ANALYSIS, 2022, 32 (03) : 519 - 521
  • [50] Automated diagnosis of myositis from muscle ultrasound: Exploring the use of machine learning and deep learning methods
    Burlina, Philippe
    Billings, Seth
    Joshi, Neil
    Albayda, Jemima
    PLOS ONE, 2017, 12 (08):