Exploring deep learning and machine learning for novel red phosphor materials

被引:0
|
作者
Novita, Mega [1 ]
Chauhan, Alok Singh [2 ]
Ujianti, Rizky Muliani Dwi [3 ]
Marlina, Dian [4 ]
Kusumo, Haryo [5 ]
Anwar, Muchamad Taufiq [6 ]
Piasecki, Michal [7 ]
Brik, Mikhail G. [7 ,8 ,9 ,10 ,11 ,12 ]
机构
[1] Graduate Program of Science Education, Universitas PGRI Semarang, Jl Sidodadi Timur No. 24, Central Java, Semarang,50232, Indonesia
[2] School of Computer Applications and Technology, Galgotias University, Plot No. 2, Yamuna Expy, Sector 17A, Uttar Pradesh, Greater Noida,203201, India
[3] Department of Food Engineering, Faculty of Engineering and Informatics, Universitas PGRI Semarang, Jl Sidodadi Timur No. 24, Central Java, Semarang,50232, Indonesia
[4] Department of Pharmacy, Faculty of Engineering anad Informatics, Universitas Setia Budi, Jl. Letjen Sutoyo, Mojosongo, Kec. Jebres, Jawa Tengah, Kota Surakarta,57127, Indonesia
[5] Faculty of Vocational Studies, Universitas Sains dan Teknologi Komputer, Jl. Majapahit 605, Central Java, Semarang,50192, Indonesia
[6] Automotive Industry Information System, Politeknik STMI Jakarta, Jl. Letjen Suprapto No. 26, Central Jakarta, Jakarta,10510, Indonesia
[7] Department of Theoretical Physics, Jan Dlugosz University, Czestochowa, Poland
[8] Centre of Excellence for Photoconversion, Vinča Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
[9] School of Optoelectronic Engineering and CQUPT-BUL Innovation Institute, Chongqing University of Posts and Telecommunications, Chongqing, China
[10] Academy of Romanian Scientists, Ilfov Str. No. 3, Bucharest, Romania
[11] Institute of Physics, University of Tartu, W. Ostwald Str. 1, Tartu, Estonia
[12] Institute of Solid State Physics, University of Latvia, Kengaraga 8, Riga,LV-1063, Latvia
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [11] Exploring the State of Machine Learning and Deep Learning in Medicine: A Survey of the Italian Research Community
    Bottrighi, Alessio
    Pennisi, Marzio
    INFORMATION, 2023, 14 (09)
  • [12] Exploring materials band structure space with unsupervised machine learning
    Nunez, Matias
    COMPUTATIONAL MATERIALS SCIENCE, 2019, 158 : 117 - 123
  • [13] Deep learning: a branch of machine learning
    Kumar, P. Rajendra
    Manash, E. B. K.
    INTERNATIONAL CONFERENCE ON COMPUTER VISION AND MACHINE LEARNING, 2019, 1228
  • [14] Deep Learning and Machine Learning in Robotics
    Bonsignorio, Fabio
    Hsu, David
    Johnson-Roberson, Matthew
    Kober, Jens
    IEEE ROBOTICS & AUTOMATION MAGAZINE, 2020, 27 (02) : 20 - 21
  • [15] PRINCIPLES OF DEEP LEARNING AND MACHINE LEARNING
    Carrino, J. A.
    OSTEOPOROSIS INTERNATIONAL, 2020, 31 (SUPPL 1) : S95 - S95
  • [16] A Novel Deep learning and Machine Learning powered approach for Image Forgery Detection
    Nanthini, N.
    Sasipriya, S.
    Sahoo, Santosh Kumar
    Pattanaik, Balachandra
    Sivakumar, S. A.
    Shankar, B. Maruthi
    PROCEEDINGS OF THE 6TH INTERNATIONAL CONFERENCE ON INVENTIVE COMPUTATION TECHNOLOGIES (ICICT 2021), 2021, : 765 - 772
  • [17] Exploring the potential of deep learning and machine learning techniques for randomness analysis to enhance security on IoT
    Ince, Kenan
    INTERNATIONAL JOURNAL OF INFORMATION SECURITY, 2024, 23 (02) : 1117 - 1130
  • [18] Machine Learning and Deep Learning for Loan Prediction in Banking: Exploring Ensemble Methods and Data Balancing
    Sayed, Eslam Hussein
    Alabrah, Amerah
    Rahouma, Kamel Hussein
    Zohaib, Muhammad
    Badry, Rasha M.
    IEEE ACCESS, 2024, 12 : 193997 - 194019
  • [19] Exploring the Effectiveness of Machine Learning and Deep Learning Techniques for EEG Signal Classification in Neurological Disorders
    Khalfallah, Souhaila
    Puech, William
    Tlija, Mehdi
    Bouallegue, Kais
    IEEE ACCESS, 2025, 13 : 17002 - 17015
  • [20] Exploring the potential of deep learning and machine learning techniques for randomness analysis to enhance security on IoT
    Kenan Ince
    International Journal of Information Security, 2024, 23 : 1117 - 1130