Gaussian multiplicative chaos for the sine-process

被引:0
作者
Bufetov, A. I. [1 ,2 ,3 ,4 ]
机构
[1] Russian Acad Sci, Steklov Math Insitute, Moscow, Russia
[2] Russian Acad Sci, Kharkevich Inst, Inst Informat Transmiss Problems, Moscow, Russia
[3] St Petersburg State Univ, St Petersburg, Russia
[4] CNRS, Inst Math Marseille, Marseille, France
关键词
D O I
10.4213/rm10156e
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:1155 / 1157
页数:3
相关论文
共 12 条
[1]   A fredholm determinant formula for Toeplitz determinants [J].
Borodin, A ;
Okounkov, A .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 2000, 37 (04) :386-396
[2]   Kernels of conditional determinantal measures and the Lyons-Peres completeness conjecture [J].
Bufetov, Alexander, I ;
Qiu, Yanqi ;
Shamov, Alexander .
JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2021, 23 (05) :1477-1519
[3]   SCATTERING THEORY AND POLYNOMIALS ORTHOGONAL ON THE UNIT CIRCLE [J].
GERONIMO, JS ;
CASE, KM .
JOURNAL OF MATHEMATICAL PHYSICS, 1979, 20 (02) :299-310
[4]   Determinantal processes and completeness of random exponentials: the critical case [J].
Ghosh, Subhroshekhar .
PROBABILITY THEORY AND RELATED FIELDS, 2015, 163 (3-4) :643-665
[5]  
Bufetov AI, 2019, Arxiv, DOI arXiv:1912.13454
[6]   On random matrices from the compact classical groups [J].
Johansson, K .
ANNALS OF MATHEMATICS, 1997, 145 (03) :519-545
[7]  
Kahane J.-P., 1986, Ann. Sci. Math. Quebec, V10, P117
[8]  
KAHANE JP, 1985, ANN SCI MATH QUEBEC, V9, P105
[9]  
Lyons R., 2003, Publ. Math. Inst. Hautes Etudes Sci, V98, P167
[10]   Gaussian multiplicative chaos and applications: A review [J].
Rhodes, Remi ;
Vargas, Vincent .
PROBABILITY SURVEYS, 2014, 11 :315-392