Prediction of Hardness and Fracture Toughness for WC-FeAl from Its Microstructural Images via Convolutional Neural Network

被引:0
作者
Furushima R. [1 ]
Maruyama Y. [1 ]
机构
[1] Multi-Material Research Institute, National Institute of Advanced Industrial Science and Technology, 4-205 Sakurazaka, Moriyama-Ku, Nagoya
来源
Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy | 2023年 / 70卷 / 07期
关键词
characteristic prediction; fracture toughness; hard material; hardness; microstructure;
D O I
10.2497/jjspm.70.326
中图分类号
学科分类号
摘要
The mechanical properties, such as Vickers hardness and crack length, of various WC-FeAl hard materials were predicted using deep learning via a convolutional neural network (CNN) trained on microstructures. The accuracy of the predictions was verified using gradient-weighted class activation mapping (Grad-CAM), which is a kind of image visualization technology that identifies important structural features for AI classification based on mechanical properties. The accuracies, expressed as coefficients of determination for unknown samples (test data), were found to be 0.89 and 0.75 at most for Vickers hardness and crack length, respectively. The AI correctly recognized microstructural quality and determined classes that represented differences in mechanical properties as evidenced by the feature maps obtained, indicating that CNN prediction was a powerful tool for analyzing WC-FeAl hard materials. ©2023 Japan Society of Powder and Powder Metallurgy.
引用
收藏
页码:326 / 335
页数:9
相关论文
共 34 条
[1]  
Furushima R., Katou K., Nakao S., Sun Z. M., Shimojima K., Hosokawa H., Matsumoto A., Int. J. Refract. Met. Hard Mater, 42, pp. 42-46, (2014)
[2]  
Furushima R., Katou K., Nakao S., Sun Z. M., Shimojima K., Hosokawa H., Matsumoto A., J. Jpn. Soc. Powder Powder Metallurgy, 61, pp. 281-289, (2014)
[3]  
Furushima R., Katou K., Shimojima K., Hosokawa H., Matsumoto A., Int. J. Refract. Met. Hard Mater, 50, pp. 16-22, (2015)
[4]  
WHITE PAPER Information and Communications in Japan, (2016)
[5]  
Rickman J. M., Lookman T., Kalinin S. V., Materials informatics: Acta Mater, 168, pp. 473-510, (2019)
[6]  
Frydrych K., Karimi K., Pecelerowicz M., Alvarez R., Dominguez-Gutierrez F. J., Rovaris F., Papanikolaou S., Materials, 14, (2021)
[7]  
Mitchell T. M., Machine Learning, (1997)
[8]  
Roebuck B., Int. J. Refract. Met. Hard Mater, 24, pp. 101-108, (2006)
[9]  
Schulz H., Behnke S., Intelligenz, 26, pp. 357-363, (2012)
[10]  
Roy S., Saini B. S., Chakrabarti D., Chakraborti N., Mater. Manuf. Process, 35, pp. 611-624, (2020)