An Interpretable Brain Graph Contrastive Learning Framework for Brain Disorder Analysis

被引:4
作者
Luo, Xuexiong [1 ]
Dong, Guangwei [1 ]
Wu, Jia [1 ]
Beheshti, Amin [1 ]
Yang, Jian [1 ]
Xue, Shan [1 ]
机构
[1] Macquarie Univ, Sydney, NSW, Australia
来源
PROCEEDINGS OF THE 17TH ACM INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING, WSDM 2024 | 2024年
基金
澳大利亚研究理事会;
关键词
Brain Graph Analysis; Graph Contrastive Learning;
D O I
10.1145/3616855.3635695
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we propose an interpretable brain graph contrastive learning framework, which aims to learn brain graph representations by a unsupervised way for disorder prediction and pathogenic analysis. Our framework consists of two key designs: We first utilize the controllable data augmentation strategy to perturb unimportant structures and attribute features for the generation of brain graphs. Then, considering that the difference of healthy and patient brain graphs is small, we introduce hard negative sample evaluation to weight negative samples of the contrastive loss, which can learn more discriminative brain graph representations. More importantly, our method can observe salient brain regions and connections for pathogenic analysis. We conduct disorder prediction and interpretable analysis experiments on three real-world neuroimaging datasets to demonstrate the effectiveness of our framework.
引用
收藏
页码:1074 / 1077
页数:4
相关论文
共 14 条
[1]   Interpretable Graph Neural Networks for Connectome-Based Brain Disorder Analysis [J].
Cui, Hejie ;
Dai, Wei ;
Zhu, Yanqiao ;
Li, Xiaoxiao ;
He, Lifang ;
Yang, Carl .
MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, MICCAI 2022, PT VIII, 2022, 13438 :375-385
[2]   The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism [J].
Di Martino, A. ;
Yan, C-G ;
Li, Q. ;
Denio, E. ;
Castellanos, F. X. ;
Alaerts, K. ;
Anderson, J. S. ;
Assaf, M. ;
Bookheimer, S. Y. ;
Dapretto, M. ;
Deen, B. ;
Delmonte, S. ;
Dinstein, I. ;
Ertl-Wagner, B. ;
Fair, D. A. ;
Gallagher, L. ;
Kennedy, D. P. ;
Keown, C. L. ;
Keysers, C. ;
Lainhart, J. E. ;
Lord, C. ;
Luna, B. ;
Menon, V. ;
Minshew, N. J. ;
Monk, C. S. ;
Mueller, S. ;
Mueller, R. A. ;
Nebel, M. B. ;
Nigg, J. T. ;
O'Hearn, K. ;
Pelphrey, K. A. ;
Peltier, S. J. ;
Rudie, J. D. ;
Sunaert, S. ;
Thioux, M. ;
Tyszka, J. M. ;
Uddin, L. Q. ;
Verhoeven, J. S. ;
Wenderoth, N. ;
Wiggins, J. L. ;
Mostofsky, S. H. ;
Milham, M. P. .
MOLECULAR PSYCHIATRY, 2014, 19 (06) :659-667
[3]   Default Mode Connectivity in Youth With Perinatally Acquired HIV [J].
Herting, Megan M. ;
Uban, Kristina A. ;
Williams, Paige L. ;
Gautam, Prapti ;
Huo, Yanling ;
Malee, Kathleen ;
Yogev, Ram ;
Csernansky, John ;
Wang, Lei ;
Nichols, Sharon ;
Van Dyke, Russell ;
Sowell, Elizabeth R. .
MEDICINE, 2015, 94 (37)
[4]   BrainGNN: Interpretable Brain Graph Neural Network for fMRI Analysis [J].
Li, Xiaoxiao ;
Zhou, Yuan ;
Dvornek, Nicha ;
Zhang, Muhan ;
Gao, Siyuan ;
Zhuang, Juntang ;
Scheinost, Dustin ;
Staib, Lawrence H. ;
Ventola, Pamela ;
Duncan, James S. .
MEDICAL IMAGE ANALYSIS, 2021, 74
[5]  
Liu Ziyin, 2019, NEURIPS, V32
[6]  
Kipf TN, 2017, Arxiv, DOI [arXiv:1609.02907, 10.48550/arXiv.1609.02907]
[7]  
Niu CX, 2024, Arxiv, DOI [arXiv:2301.13340, DOI 10.1109/TNNLS.2023.3339770]
[8]   Explainability Methods for Graph Convolutional Neural Networks [J].
Pope, Phillip E. ;
Kolouri, Soheil ;
Rostami, Mohammad ;
Martin, Charles E. ;
Hoffmann, Heiko .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :10764-10773
[9]  
Reavis E.A., 2020, Schizophrenia bulletin open, V1
[10]  
Shi Yucheng, 2023, arXiv