Desingularizing positive scalar curvature 4-manifolds

被引:0
作者
Kazaras, Demetre [1 ]
机构
[1] Duke Univ, Dept Math, Durham, NC 27708 USA
关键词
53C21; 53D23; 53C80; 57R90; CONSTANT MEAN-CURVATURE; CONFORMAL DEFORMATION; MANIFOLDS; MASS; CONSTRUCTION; THEOREM; SPACES;
D O I
10.1007/s00208-024-02829-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that the bordism group of closed 3-manifolds with positive scalar curvature (psc) metrics is trivial by explicit methods. Our constructions are derived from scalar-flat K & auml;hler ALE surfaces discovered by Lock-Viaclovsky. Next, we study psc 4-manifolds with metric singularities along points and embedded circles. Our psc null-bordisms are essential tools in a desingularization process developed by Li-Mantoulidis. This allows us to prove a non-existence result for singular psc metrics on enlargeable 4-manifolds with uniformly Euclidean geometry. As a consequence, we obtain a positive mass theorem for asymptotically flat 4-manifolds with non-negative scalar curvature and low regularity.
引用
收藏
页码:4951 / 4972
页数:22
相关论文
共 46 条
[21]   GRAVITATIONAL INSTANTONS [J].
HAWKING, SW .
PHYSICS LETTERS A, 1977, 60 (02) :81-83
[22]  
Hebey E., 1999, Courant Lect. Notes Math., V5
[23]  
KRONHEIMER PB, 1989, J DIFFER GEOM, V29, P685, DOI 10.4310/jdg/1214443067
[24]  
KRONHEIMER PB, 1989, J DIFFER GEOM, V29, P665, DOI 10.4310/jdg/1214443066
[25]   COUNTER-EXAMPLES TO THE GENERALIZED POSITIVE ACTION CONJECTURE [J].
LEBRUN, C .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1988, 118 (04) :591-596
[26]   The Positive Mass Theorem for Manifolds with Distributional Curvature [J].
Lee, Dan A. ;
LeFloch, Philippe G. .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2015, 339 (01) :99-120
[27]  
Li C., 2017, POSITIVE SCALAR CURV
[28]  
Littman W., 1963, Ann. Scuola Norm Sup. Pisa (3), V3, P43
[29]   A smorgasbord of scalar-flat Kahler ALE surfaces [J].
Lock, Michael T. ;
Viaclovsky, Jeff A. .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2019, 746 :171-208
[30]   Scalar curvature and hammocks [J].
Lohkamp, J .
MATHEMATISCHE ANNALEN, 1999, 313 (03) :385-407