Classification of brain strokes using divergence-based convolutional neural networks

被引:1
作者
Polat, Ozlem [1 ]
Dokur, Zumray [2 ]
Olmez, Tamer [2 ]
机构
[1] Sivas Cumhuriyet Univ, Fac Technol, Dept Mechatron Engn, Sivas, Turkiye
[2] Istanbul Tech Univ, Fac Elect & Elect, Dept Elect & Commun Engn, Istanbul, Turkiye
关键词
Brain stroke; Image classification; Deep neural networks; Walsh matrix;
D O I
10.1016/j.bspc.2024.106193
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Stroke is a cerebrovascular issue caused by reduced or interrupted blood flow to the brain, resulting in the rapid death of brain cells and potential permanent functional damage. Early detection, classification, and immediate intervention are essential to prevent severe consequences, including death or lifelong disabilities. In this study, a total of 6650 brain CT images were used, which included 1130 ischemic stroke, 1093 hemorrhagic stroke, and 4427 non -stroke cases provided by the Turkish Ministry of Health. The study first aimed to determine the presence of stroke in the brain. Secondly, in cases where stroke was detected, the type of stroke, whether ischemic or hemorrhagic, was determined. Lastly, the images were classified into three categories: non -stroke, hemorrhagic, and ischemic. A newly introduced divergence -based deep neural network (DNN) was modified and utilized for the method. Features were extracted from the convolutional neural network (CNN) using Walsh matrices, and classification was performed using the minimum distance network (MDN). Experimental results showed that when the images were binary classified as stroke vs. non -stroke and ischemic vs. hemorrhagic type, they achieved accuracies of 99.248% and 99.324%, respectively. For the three -class classification (non -stroke, ischemic, and hemorrhagic), a success rate of 99.097% was achieved. The proposed study has advantages in terms of no preprocessing stage, classification with real images without data augmentation, and the low number of parameters in the employed network. The results indicate that the proposed network successfully detects the presence and type of stroke with high accuracy and outperforms existing studies in the literature.
引用
收藏
页数:10
相关论文
共 37 条
[1]  
Aboudi F, 2022, INT C CONTROL DECISI, P724, DOI [10.1109/CODIT55151.2022.9804030, 10.1109/CoDIT55151.2022.9804030]
[2]   Segmentation of CT Brain Stroke Image using Marker Controlled Watershed [J].
Ajam, Mohammed ;
Kanaan, Hussein ;
Ayache, Mohammad ;
el Khansa, Lina .
2019 FIFTH INTERNATIONAL CONFERENCE ON ADVANCES IN BIOMEDICAL ENGINEERING (ICABME), 2019, :160-163
[3]  
Alhatemi R.A.J., 2022, Comput. Sci., V19, P2
[4]   Automated classification of brain diseases using the Restricted Boltzmann Machine and the Generative Adversarial Network [J].
Aslan, Narin ;
Dogan, Sengul ;
Koca, Gonca Ozmen .
ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2023, 126
[5]   Extending thrombolysis to 4.5-9 h and wake-up stroke using perfusion imaging: a systematic review and meta-analysis of individual patient data [J].
Campbell, Bruce C., V ;
Ma, Henry ;
Ringleb, Peter A. ;
Parsons, Mark W. ;
Churilov, Leonid ;
Bendszus, Martin ;
Levi, Christopher R. ;
Hsu, Chung ;
Kleinig, Timothy J. ;
Fatar, Marc ;
Leys, Didier ;
Molina, Carlos ;
Wijeratne, Tissa ;
Curtze, Sami ;
Dewey, Helen M. ;
Barber, P. Alan ;
Butcher, Kenneth S. ;
De Silva, Deidre A. ;
Bladin, Christopher F. ;
Yassi, Nawaf ;
Pfaff, Johannes A. R. ;
Sharma, Gagan ;
Bivard, Andrew ;
Desmond, Patricia M. ;
Schwab, Stefan ;
Schellinger, Peter D. ;
Yan, Bernard ;
Mitchell, Peter J. ;
Serena, Joaquin ;
Toni, Danilo ;
Thijs, Vincent ;
Hacke, Werner ;
Davis, Stephen M. ;
Donnan, Geoffrey A. .
LANCET, 2019, 394 (10193) :139-147
[6]  
Candiani V, 2021, Arxiv, DOI arXiv:2011.02852
[7]   Deep Learning-Based Brain Computed Tomography Image Classification with Hyperparameter Optimization through Transfer Learning for Stroke [J].
Chen, Yung-Ting ;
Chen, Yao-Liang ;
Chen, Yi-Yun ;
Huang, Yu-Ting ;
Wong, Ho-Fai ;
Yan, Jiun-Lin ;
Wang, Jiun-Jie .
DIAGNOSTICS, 2022, 12 (04)
[8]  
Cinar Necip, 2023, 2023 13th International Conference on Advanced Computer Information Technologies (ACIT), P595, DOI 10.1109/ACIT58437.2023.10275682
[9]   Heartbeat classification by using a convolutional neural network trained with Walsh functions [J].
Dokur, Zumray ;
Olmez, Tamer .
NEURAL COMPUTING & APPLICATIONS, 2020, 32 (16) :12515-12534
[10]   World Stroke Organization (WSO): Global Stroke Fact Sheet 2022 [J].
Feigin, Valery L. ;
Brainin, Michael ;
Norrving, Bo ;
Martins, Sheila ;
Sacco, Ralph L. ;
Hacke, Werner ;
Fisher, Marc ;
Pandian, Jeyaraj ;
Lindsay, Patrice .
INTERNATIONAL JOURNAL OF STROKE, 2022, 17 (01) :18-29