Integrated correlators at strong coupling in an orbifold of N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 4 SYM

被引:0
作者
Alessandro Pini [1 ]
Paolo Vallarino [2 ]
机构
[1] Institut für Physik,Dipartimento di Fisica
[2] Humboldt-Universität zu Berlin,undefined
[3] IRIS Gebäude,undefined
[4] Università di Torino,undefined
[5] I.N.F.N. - sezione di Torino,undefined
关键词
Matrix Models; 1/; Expansion; Extended Supersymmetry; Supersymmetric Gauge Theory;
D O I
10.1007/JHEP06(2024)170
中图分类号
学科分类号
摘要
We consider the 4dN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 2 superconformal quiver gauge theory obtained by a ℤ2 orbifold of N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 4 super Yang-Mills (SYM). By exploiting supersymmetric localization, we study the integrated correlator of two Coulomb branch and two moment map operators and the integrated correlator of four moment map operators, determining exact expressions valid for any value of the ’t Hooft coupling in the planar limit. Additionally, for the second correlator, we obtain an exact expression also for the next-to-planar contribution. Then, we derive the leading terms of their strong-coupling expansions and outline the differences with respect to the N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 4 SYM theory.
引用
收藏
相关论文
共 35 条
  • [1] Pestun V(2012) = 2 Commun. Math. Phys. 313 71-undefined
  • [2] Maldacena JM(1998) = 2 Adv. Theor. Math. Phys. 2 231-undefined
  • [3] Dolan FA(2003) × Annals Phys. 307 41-undefined
  • [4] Osborn H(2016) = 2 JHEP 11 135-undefined
  • [5] Cordova C(2017) = 2 JHEP 01 103-undefined
  • [6] Dumitrescu TT(2016)undefined JHEP 12 120-undefined
  • [7] Intriligator K(2016)undefined JHEP 06 109-undefined
  • [8] Gerchkovitz E(2018)undefined Nucl. Phys. B 926 427-undefined
  • [9] Rodriguez-Gomez D(2022)undefined JHEP 09 226-undefined
  • [10] Russo JG(2013)undefined JHEP 11 130-undefined