Stress corrosion cracking behavior and mechanism of 2205 duplex stainless steel under applied polarization potentials

被引:14
作者
Pan, Yue [1 ,2 ]
Sun, Baozhuang [1 ]
Chen, Hetian [3 ]
Liu, Zhiyong [1 ]
Dai, Wenhe [4 ]
Yang, Xiaojia [1 ]
Yang, Weiting [2 ]
Deng, Yida [2 ]
Li, Xiaogang [1 ]
机构
[1] Univ Sci & Technol Beijing, Natl Mat Corros & Protect Sci Data Ctr, Key Lab Corros & Protect MOE, Beijing 100083, Peoples R China
[2] Hainan Univ, Sch Mat Sci & Engn, Key Lab Electron Microscopy Hainan Prov P, Haikou 570228, Peoples R China
[3] Univ New South Wales UNSW Sydney, Sch Mat Sci & Engn, Sydney 2052, Australia
[4] Hebei Special Equipment Supervis & Inspection Inst, Key Lab Safety Evaluat Steel Pipes & Fittings Stat, Shijiazhuang 050061, Peoples R China
基金
海南省自然科学基金; 中国国家自然科学基金;
关键词
Duplex stainless steels; SCC; Cathodic protection; Hydrogen embrittlement; Non-steady electrochemistry; FACILITATED ANODIC-DISSOLUTION; HYDROGEN EMBRITTLEMENT; PIPELINE STEEL; PASSIVE FILMS; MICROSTRUCTURE; SUSCEPTIBILITY; DEFORMATION; ENVIRONMENT; DECOHESION; EVOLUTION;
D O I
10.1016/j.corsci.2024.111978
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this work, a non-steady electrochemical model for assessing stress corrosion cracking (SCC) of 2205 duplex stainless steel (DSS) under applied polarization potentials was proposed, and the SCC mechanism was revealed. With the negative shift of potentials, hydrogen enhances SCC susceptibility by deteriorating passive film, inhibiting repassivation and causing serious damage. In particular, at -850 mV (vs. SCE), the synergetic effect of anodic dissolution (AD) and hydrogen embrittlement (HE) causes severe pitting and SCC. The negative shift of applied potentials changes the preferential pit/SCC initiation site due to high hydrogen concentration in austenite.
引用
收藏
页数:13
相关论文
共 55 条
[1]   Sensitivity to hydrogen induced cracking, and corrosion performance of an API X65 pipeline steel in H2S containing environment: influence of heat treatment and its subsequent microstructural changes [J].
Anijdan, S. H. Mousavi ;
Arab, Gh ;
Sabzi, M. ;
Sadeghi, M. ;
Eivani, A. R. ;
Jafarian, H. R. .
JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2021, 15 :1-16
[2]   Consequences of mobile and trapped hydrogen on the dissolution kinetics and pitting processes of an austenitic stainless steel [J].
不详 .
CORROSION SCIENCE, 2022, 207
[3]   Effect of bainitic microstructure on the susceptibility of pipeline steels to hydrogen induced cracking [J].
Arafin, M. A. ;
Szpunar, J. A. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2011, 528 (15) :4927-4940
[4]   Corrosion studies using potentiodynamic and EIS electrochemical techniques of welded lean duplex stainless steel UNS S82441 [J].
Brytan, Z. ;
Niagaj, J. ;
Reimann, L. .
APPLIED SURFACE SCIENCE, 2016, 388 :160-168
[5]   Insight into electrochemical passivation behavior and surface chemistry of 2205 duplex stainless steel: effect of tensile elastic stress [J].
Chen, Longjun ;
Liu, Wei ;
Dong, Baojun ;
Zhao, Yonggang ;
Zhang, Tianyi ;
Fan, Yueming ;
Yang, Weijian .
CORROSION SCIENCE, 2021, 193
[6]   Hydrogen-assisted cracking in 2205 duplex stainless steel: Initiation, propagation and interaction with deformation-induced martensite [J].
Claeys, L. ;
De Graeve, I ;
Depover, T. ;
Verbeken, K. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2020, 797
[7]   First observation by EBSD of martensitic transformations due to hydrogen presence during straining of duplex stainless steel [J].
Claeys, L. ;
Depover, T. ;
De Graeve, I. ;
Verbeken, K. .
MATERIALS CHARACTERIZATION, 2019, 156
[8]   Effect of plastic deformation on the electrochemical and stress corrosion cracking behavior of X70 steel in near-neutral pH environment [J].
Cui, Zhongyu ;
Liu, Zhiyong ;
Wang, Liwei ;
Li, Xiaogang ;
Du, Cuiwei ;
Wang, Xin .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2016, 677 :259-273
[9]   A comparative study of critical pitting temperature (CPT) of stainless steels by electrochemical impedance spectroscopy (EIS), potentiodynamic and potentiostatic techniques [J].
Ebrahimi, N. ;
Momeni, M. ;
Kosari, A. ;
Zakeri, M. ;
Moayed, M. H. .
CORROSION SCIENCE, 2012, 59 :96-102
[10]   The effects of hydrogen on anodic dissolution and passivation of iron in alkaline solutions [J].
Ejaz, Ahsan ;
Lu, Zhanpeng ;
Chen, Junjie ;
Xiao, Qian ;
Ru, Xiangkun ;
Han, Guangdong ;
Shoji, Tetsuo .
CORROSION SCIENCE, 2015, 101 :165-181