TabFedSL: A Self-Supervised Approach to Labeling Tabular Data in Federated Learning Environments

被引:1
|
作者
Wang, Ruixiao [1 ]
Hu, Yanxin [1 ]
Chen, Zhiyu [1 ,2 ]
Guo, Jianwei [1 ]
Liu, Gang [1 ,2 ]
机构
[1] Changchun Univ Technol, Sch Comp Sci & Engn, Changchun 130102, Peoples R China
[2] Jilin Prov Data Serv Ind Publ Technol Res Ctr, Changchun 130102, Peoples R China
关键词
Federated Learning; self-supervised learning; tabular data; deep learning; FRAMEWORK;
D O I
10.3390/math12081158
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Currently, self-supervised learning has shown effectiveness in solving data labeling issues. Its success mainly depends on having access to large, high-quality datasets with diverse features. It also relies on utilizing the spatial, temporal, and semantic structures present in the data. However, domains such as finance, healthcare, and insurance primarily utilize tabular data formats. This presents challenges for traditional data augmentation methods aimed at improving data quality. Furthermore, the privacy-sensitive nature of these domains complicates the acquisition of the extensive, high-quality datasets necessary for training effective self-supervised models. To tackle these challenges, our proposal introduces a novel framework that combines self-supervised learning with Federated Learning (FL). This approach aims to solve the problem of data-distributed training while ensuring training quality. Our framework improves upon the conventional self-supervised learning data augmentation paradigm by incorporating data labeling through the segmentation of data into subsets. Our framework adds noise by splitting subsets of data and can achieve the same level of centralized learning in a distributed environment. Moreover, we conduct experiments on various public tabular datasets to evaluate our approach. The experimental results showcase the effectiveness and generalizability of our proposed method in scenarios involving unlabeled data and distributed settings.
引用
收藏
页数:20
相关论文
共 50 条
  • [41] A Comprehensive and Adversarial Approach to Self-Supervised Representation Learning
    Xu, Yi-Zhan
    Han, Sungwon
    Park, Sungwon
    Cha, Meeyoung
    Li, Cheng-Te
    2020 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2020, : 709 - 717
  • [42] Self-supervised learning for denoising of multidimensional MRI data
    Kang, Beomgu
    Lee, Wonil
    Seo, Hyunseok
    Heo, Hye-Young
    Park, Hyunwook
    MAGNETIC RESONANCE IN MEDICINE, 2024, 92 (05) : 1980 - 1994
  • [43] Self-supervised generative learning for sequential data prediction
    Xu, Ke
    Zhong, Guoqiang
    Deng, Zhaoyang
    Zhang, Kang
    Huang, Kaizhu
    APPLIED INTELLIGENCE, 2023, 53 (18) : 20675 - 20689
  • [44] Self-supervised learning for point cloud data: A survey
    Zeng, Changyu
    Wang, Wei
    Nguyen, Anh
    Xiao, Jimin
    Yue, Yutao
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 237
  • [45] Self-Supervised Learning for Seismic Data Reconstruction and Denoising
    Meng, Fanlei
    Fan, QinYin
    Li, Yue
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [46] Self-supervised Learning from Semantically Imprecise Data
    Brust, Clemens-Alexander
    Barz, Bjoern
    Denzler, Joachim
    PROCEEDINGS OF THE 17TH INTERNATIONAL JOINT CONFERENCE ON COMPUTER VISION, IMAGING AND COMPUTER GRAPHICS THEORY AND APPLICATIONS (VISAPP), VOL 5, 2022, : 27 - 35
  • [47] Self-supervised Representation Learning Using 360° Data
    Li, Junnan
    Liu, Jianquan
    Wong, Yongkang
    Nishimura, Shoji
    Kankanhalli, Mohan S.
    PROCEEDINGS OF THE 27TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA (MM'19), 2019, : 998 - 1006
  • [48] Self-supervised learning for denoising quasiparticle interference data
    Kuijf, Ilse S.
    Tromp, Willem O.
    Benschop, Tjerk
    Ramones, Nino Philip
    Sulangi, Miguel Antonio
    van Nieuwenburg, Evert P. L.
    Allan, Milan P.
    PHYSICAL REVIEW B, 2025, 111 (03)
  • [49] Self-supervised generative learning for sequential data prediction
    Ke Xu
    Guoqiang Zhong
    Zhaoyang Deng
    Kang Zhang
    Kaizhu Huang
    Applied Intelligence, 2023, 53 : 20675 - 20689
  • [50] Traffic Data Imputation Based on Self-Supervised Learning
    Zhou C.
    Lin P.
    Yan M.
    Huanan Ligong Daxue Xuebao/Journal of South China University of Technology (Natural Science), 2023, 51 (04): : 101 - 114