Rational Design of an In-Situ Polymer-Inorganic Hybrid Solid Electrolyte Interphase for Realising Stable Zn Metal Anode under Harsh Conditions

被引:29
作者
Chen, Ruwei [1 ,2 ]
Zhang, Wei [1 ]
Guan, Chaohong [4 ]
Zhou, Yundong [3 ]
Gilmore, Ian [3 ]
Tang, Hao [2 ]
Zhang, Zhenyu [5 ]
Dong, Haobo [1 ]
Dai, Yuhang [1 ]
Du, Zijuan [1 ]
Gao, Xuan [1 ]
Zong, Wei [1 ]
Xu, Yewei [1 ]
Jiang, Peie [1 ]
Liu, Jiyang [1 ]
Zhao, Fangjia [1 ]
Li, Jianwei [1 ]
Wang, Xiaohui [2 ]
He, Guanjie [1 ]
机构
[1] UCL, Dept Chem, London WC1E 7JE, England
[2] South China Univ Technol, State Key Lab Pulp & Paper Engn, Guangzhou 510641, Peoples R China
[3] Natl Phys Lab, Hampton Rd, Teddington TW11 0LW, England
[4] Shanghai Jiao Tong Univ, Univ Michigan Shanghai Jiao Tong Univ Joint Inst, Shanghai 200240, Peoples R China
[5] UCL, Dept Chem Engn, Electrochem Innovat Lab, London WC1E 7JE, England
基金
英国工程与自然科学研究理事会; 英国科研创新办公室;
关键词
Aqueous Zinc-Ion batteries; Zinc Anode; Solid Electrolyte Interphase; Polymer-Inorganic SEI; TRACE AMOUNTS; ION; CHEMISTRY;
D O I
10.1002/anie.202401987
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The in-depth understanding of the composition-property-performance relationship of solid electrolyte interphase (SEI) is the basis of developing a reliable SEI to stablize the Zn anode-electrolyte interface, but it remains unclear in rechargeable aqueous zinc ion batteries. Herein, a well-designed electrolyte based on 2 M Zn(CF3SO3)(2)-0.2 M acrylamide-0.2 M ZnSO4 is proposed. A robust polymer (polyacrylamide)-inorganic (Zn4SO4(OH)(6).xH(2)O) hybrid SEI is in situ constructed on Zn anodes through controllable polymerization of acrylamide and coprecipitation of SO42- with Zn2+ and OH-. For the first time, the underlying SEI composition-property-performance relationship is systematically investigated and correlated. The results showed that the polymer-inorganic hybrid SEI, which integrates the high modulus of the inorganic component with the high toughness of the polymer ingredient, can realize high reversibility and long-term interfacial stability, even under ultrahigh areal current density and capacity (30 mA cm(-2)similar to 30 mAh cm(-2)). The resultant Zn||NH4V4O10 cell also exhibits excellent cycling stability. This work will provide a guidance for the rational design of SEI layers in rechargeable aqueous zinc ion batteries.
引用
收藏
页数:12
相关论文
共 59 条
[1]   Photochemically driven solid electrolyte interphase for extremely fast-charging lithium-ion batteries [J].
Baek, Minsung ;
Kim, Jinyoung ;
Jin, Jaegyu ;
Choi, Jang Wook .
NATURE COMMUNICATIONS, 2021, 12 (01)
[2]   A Replacement Reaction Enabled Interdigitated Metal/Solid Electrolyte Architecture for Battery Cycling at 20 mA cm-2 and 20 mAh cm-2 [J].
Cai, Zhao ;
Ou, Yangtao ;
Zhang, Bao ;
Wang, Jindi ;
Fu, Lin ;
Wan, Mintao ;
Li, Guocheng ;
Wang, Wenyu ;
Wang, Li ;
Jiang, Jianjun ;
Seh, Zhi Wei ;
Hu, Enyuan ;
Yang, Xiao-Qing ;
Cui, Yi ;
Sun, Yongming .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2021, 143 (08) :3143-3152
[3]   Gradient design of imprinted anode for stable Zn-ion batteries [J].
Cao, Qinghe ;
Gao, Yong ;
Pu, Jie ;
Zhao, Xin ;
Wang, Yuxuan ;
Chen, Jipeng ;
Guan, Cao .
NATURE COMMUNICATIONS, 2023, 14 (01)
[4]   Multifunctional SEI-like structure coating stabilizing Zn anodes at a large current and capacity [J].
Chen, Aosai ;
Zhao, Chenyang ;
Gao, Jiaze ;
Guo, Zhikun ;
Lu, Xingyuan ;
Zhang, Jiachi ;
Liu, Zeping ;
Wang, Ming ;
Liu, Nannan ;
Fan, Lishuang ;
Zhang, Yu ;
Zhang, Naiqing .
ENERGY & ENVIRONMENTAL SCIENCE, 2023, 16 (01) :275-284
[5]   A hydrated deep eutectic electrolyte with finely-tuned solvation chemistry for high-performance zinc-ion batteries [J].
Chen, Ruwei ;
Zhang, Chengyi ;
Li, Jianwei ;
Du, Zijuan ;
Guo, Fei ;
Zhang, Wei ;
Dai, Yuhang ;
Zong, Wei ;
Gao, Xuan ;
Zhu, Jiexin ;
Zhao, Yan ;
Wang, Xiaohui ;
He, Guanjie .
ENERGY & ENVIRONMENTAL SCIENCE, 2023, 16 (06) :2540-2549
[6]   Trace Amounts of Triple-Functional Additives Enable Reversible Aqueous Zinc-Ion Batteries from a Comprehensive Perspective [J].
Chen, Ruwei ;
Zhang, Wei ;
Huang, Quanbo ;
Guan, Chaohong ;
Zong, Wei ;
Dai, Yuhang ;
Du, Zijuan ;
Zhang, Zhenyu ;
Li, Jianwei ;
Guo, Fei ;
Gao, Xuan ;
Dong, Haobo ;
Zhu, Jiexin ;
Wang, Xiaohui ;
He, Guanjie .
NANO-MICRO LETTERS, 2023, 15 (01)
[7]   Deficiency and surface engineering boosting electronic and ionic kinetics in NH4V4O10 for high-performance aqueous zinc-ion battery [J].
Cui, Fuhan ;
Wang, Dashuai ;
Hu, Fang ;
Yu, Xin ;
Guan, Chao ;
Song, Guihong ;
Xu, Feng ;
Zhu, Kai .
ENERGY STORAGE MATERIALS, 2022, 44 :197-205
[8]   Insights on Flexible Zinc-Ion Batteries from Lab Research to Commercialization [J].
Dong, Haobo ;
Li, Jianwei ;
Guo, Jian ;
Lai, Feili ;
Zhao, Fangjia ;
Jiao, Yiding ;
Brett, Dan J. L. ;
Liu, Tianxi ;
He, Guanjie ;
Parkin, Ivan P. .
ADVANCED MATERIALS, 2021, 33 (20)
[9]   Low-Operating Temperature, High-Rate and Durable Solid-State Sodium-Ion Battery Based on Polymer Electrolyte and Prussian Blue Cathode [J].
Du, Guangyuan ;
Tao, Mengli ;
Li, Jie ;
Yang, Tingting ;
Gao, Wei ;
Deng, Jianhua ;
Qi, Yuruo ;
Bao, Shu-Juan ;
Xu, Maowen .
ADVANCED ENERGY MATERIALS, 2020, 10 (05)
[10]   High-Capacity and Long-Life Zinc Electrodeposition Enabled by a Self-Healable and Desolvation Shield for Aqueous Zinc-Ion Batteries [J].
Du, Haoran ;
Zhao, Ruirui ;
Yang, Ying ;
Liu, Zhikang ;
Qie, Long ;
Huang, Yunhui .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2022, 61 (10)