Automated Pruning and Irrigation of Polyculture Plants

被引:3
作者
Adebola, Simeon [1 ]
Presten, Mark [1 ]
Parikh, Rishi [1 ]
Aeron, Shrey [1 ]
Mukherjee, Sandeep [1 ]
Sharma, Satvik [1 ]
Theis, Mark [1 ]
Teitelbaum, Walter [2 ]
Solowjow, Eugen [3 ]
Goldberg, Ken [1 ]
机构
[1] Univ Calif Berkeley, AUTOLab, Berkeley, CA 94720 USA
[2] UC Santa Cruz, Dept Robot Engn, Santa Cruz, CA 95064 USA
[3] Siemens Res Lab, Berkeley, CA 94720 USA
关键词
Agricultural automation; precision agriculture; agricultural robots; greenhouses; irrigation; neural networks; plant phenotyping; plant pruning; visual servoing; YIELD;
D O I
10.1109/TASE.2024.3388576
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Polyculture farming has environmental advantages but requires substantially more labor than monoculture farming. We present novel hardware and algorithms for automated pruning and irrigation. Using an overhead camera to collect data from physical 1.5m(2) garden testbeds, the autonomous system utilizes a learned Plant Phenotyping convolutional neural network and a Bounding Disk Tracking algorithm to evaluate the individual plant distribution and estimate the state of the garden each day. From this garden state, Alpha Garden Sim selects plants to autonomously prune. A trained neural network detects and targets specific prune points on the plant. Two custom-designed pruning tools, compatible with a Farm Bot commercial gantry system, are experimentally evaluated. Irrigation is automated using soil moisture sensors. We present results for four 60-day garden cycles. Results suggest the system can autonomously achieve 94% normalized plant diversity with pruning shears while maintaining an average canopy coverage of 84% by the end of the cycles. For code, videos, and datasets, see https://sites.google.com/berkeley.edu/pruningpolyculturej/home.
引用
收藏
页码:2199 / 2210
页数:12
相关论文
共 56 条
[41]   Automated Pruning of Polyculture Plants [J].
Presten, Mark ;
Parikh, Rishi ;
Aeron, Shrey ;
Mukherjee, Sandeep ;
Adebola, Simeon ;
Sharma, Satvik ;
Theis, Mark ;
Teitelbaum, Walter ;
Goldberg, Ken .
2022 IEEE 18TH INTERNATIONAL CONFERENCE ON AUTOMATION SCIENCE AND ENGINEERING (CASE), 2022, :242-249
[42]   INTERCROPPING AS CULTURAL PEST-CONTROL - PROSPECTS AN LIMITATIONS [J].
RISCH, SJ .
ENVIRONMENTAL MANAGEMENT, 1983, 7 (01) :9-14
[43]   U-Net: Convolutional Networks for Biomedical Image Segmentation [J].
Ronneberger, Olaf ;
Fischer, Philipp ;
Brox, Thomas .
MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION, PT III, 2015, 9351 :234-241
[44]   Agriculture's Contribution to Nitrate Contamination of Californian Groundwater (1945-2005) [J].
Rosenstock, Todd S. ;
Liptzin, Daniel ;
Dzurella, Kristin ;
Fryjoff-Hung, Anna ;
Hollander, Allan ;
Jensen, Vivian ;
King, Aaron ;
Kourakos, George ;
McNally, Alison ;
Pettygrove, G. Stuart ;
Quinn, Jim ;
Viers, Joshua H. ;
Tomich, Thomas P. ;
Harter, Thomas .
JOURNAL OF ENVIRONMENTAL QUALITY, 2014, 43 (03) :895-907
[45]  
Ruth Anita Shirley D., 2021, Inventive Communication and Computational Technologies. Proceedings of ICICCT 2020. Lecture Notes in Networks and Systems (LNNS 145), P359, DOI 10.1007/978-981-15-7345-3_30
[46]  
Sony, 2021, SNC VB770 ULTRA HIGH
[47]  
Sony, 2021, FE 20 MM F18 G FULL
[48]   AquaCrop-The FAO Crop Model to Simulate Yield Response to Water: I. Concepts and Underlying Principles [J].
Steduto, Pasquale ;
Hsiao, Theodore C. ;
Raes, Dirk ;
Fereres, Elias .
AGRONOMY JOURNAL, 2009, 101 (03) :426-437
[49]   Designing intercrops for high yield, yield stability and efficient use of resources: Are there principles? [J].
Stomph, TjeerdJan ;
Dordas, Christos ;
Baranger, Alain ;
de Rijk, Joshua ;
Dong, Bei ;
Evers, Jochem ;
Gu, Chunfeng ;
Li, Long ;
Simon, Johan ;
Jensen, Erik Steen ;
Wang, Qi ;
Wang, Yuyun ;
Wang, Zishen ;
Xu, Huasen ;
Zhang, Chaochun ;
Zhang, Lizhen ;
Zhang, Wei-Ping ;
Bedoussac, Laurent ;
van der Werf, Wopke .
ADVANCES IN AGRONOMY, VOL 160, 2020, 160 :1-50
[50]  
Strisciuglio N., 2018, ISR 2018, P1