Nash Equilibria in Two-Resource Congestion Games with Player-Specific Payoff Functions

被引:1
作者
Khanchouche, Fatima [1 ]
Sbabou, Samir [2 ]
Smaoui, Hatem [3 ]
Ziad, Abderrahmane [4 ,5 ]
机构
[1] Ferhat Abbas Univ Setif 1, Fac Sci, Dept Math, Fundamental & Numer Math Lab, Setif 19137, Algeria
[2] Univ Caen, Ctr Res Econ & Management, Esplanade Paix, F-14000 Caen, France
[3] Univ Reunion, Ctr Econ & Management Indian Ocean, 15 Ave Rene Cassin,BP 7115, F-97715 St Denis 9, France
[4] NU Normandie Univ, UNICAEN Univ Caen Normandie, CREM Ctr Rech Econ & Management, F-14000 Caen, France
[5] Ferhat Abbas Univ Setif 1, Lab Math Appl LaMA, Setif 19137, Algeria
关键词
game theory; Nash equilibria; congestion games; price of anarchy;
D O I
10.3390/g15020007
中图分类号
F [经济];
学科分类号
02 ;
摘要
In this paper, we examine the class of congestion games with player-specific payoff functions introduced by Milchtaich, I. (1996). Focusing on the special case of two resources, we give a short and simple method for identifying all Nash equilibria in pure strategies. We also provide a computation algorithm based on our theoretical analysis.
引用
收藏
页数:10
相关论文
共 24 条
[1]   Pure Nash equilibria in player-specific and weighted congestion games [J].
Ackermann, Heiner ;
Roeglin, Heiko ;
Voecking, Berthold .
THEORETICAL COMPUTER SCIENCE, 2009, 410 (17) :1552-1563
[2]   On the Impact of Combinatorial Structure on Congestion Games [J].
Ackermann, Heiner ;
Roegln, Heiko ;
Voecking, Berthold .
JOURNAL OF THE ACM, 2008, 55 (06)
[3]   THE PRICE OF STABILITY FOR NETWORK DESIGN WITH FAIR COST ALLOCATION [J].
Anshelevich, Elliot ;
Dasgupta, Anirban ;
Kleinberg, Jon ;
Tardos, Eva ;
Wexler, Tom ;
Roughgarden, Tim .
SIAM JOURNAL ON COMPUTING, 2008, 38 (04) :1602-1623
[4]   Ordinal games and generalized Nash and Stackelberg solutions [J].
Cruz, JB ;
Simaan, MA .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2000, 107 (02) :205-222
[5]   ORDINAL GAMES [J].
Durieu, Jacques ;
Haller, Hans ;
Querou, Nicolas ;
Solal, Philippe .
INTERNATIONAL GAME THEORY REVIEW, 2008, 10 (02) :177-194
[6]  
Fabrikant A., 2004, PROC 36 ACM S THEORY, P604, DOI [10.1145/1007352.1007445, DOI 10.1145/1007352.1007445]
[7]   Selfish unsplittable flows [J].
Fotakis, D ;
Kontogiannis, S ;
Spirakis, P .
THEORETICAL COMPUTER SCIENCE, 2005, 348 (2-3) :226-239
[8]   The structure and complexity of Nash equilibria for a selfish routing game [J].
Fotakis, Dimitris ;
Kontogiannis, Spyros ;
Koutsoupias, Elias ;
Mavronicolas, Marios ;
Spirakis, Paul .
THEORETICAL COMPUTER SCIENCE, 2009, 410 (36) :3305-3326
[9]   Strong equilibrium in network congestion games: increasing versus decreasing costs [J].
Holzman, Ron ;
Monderer, Dov .
INTERNATIONAL JOURNAL OF GAME THEORY, 2015, 44 (03) :647-666
[10]  
Ieong S., 2005, PROC 20 NATL C ARTIF, P489