Approximate Nash Equilibria for Discrete-Time Linear Quadratic Dynamic Games

被引:1
|
作者
Nortmann, Benita [1 ]
Mylvaganam, Thulasi [1 ]
机构
[1] Imperial Coll London, Dept Aeronaut, London SW7 2AZ, England
来源
IFAC PAPERSONLINE | 2023年 / 56卷 / 02期
关键词
Dynamic games; Feedback Nash equilibrium approximation; Linear systems; DIFFERENTIAL-GAMES;
D O I
10.1016/j.ifacol.2023.10.1886
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
It is generally challenging to determine Nash equilibrium solutions of nonzerosum dynamic games, even for games characterised by a quadratic cost and linear dynamics, and particularly in the discrete-time, infinite-horizon case. Motivated by this, we propose and characterise a notion of approximate feedback Nash equilibrium solutions for this class of dynamic games, the.a,ss-Nash equilibrium, which provides guarantees on the convergence rate of the trajectories of the resulting closed-loop system. The efficacy of the results is demonstrated via a simulation example involving macroeconomic policy design. Copyright (c) 2023 The Authors. This is an open access article under the CC BY- NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/)
引用
收藏
页码:1760 / 1765
页数:6
相关论文
共 50 条
  • [1] Feedback Nash Equilibria for Scalar Two-Player Linear-Quadratic Discrete-Time Dynamic Games
    Nortmann, Benita
    Monti, Andrea
    Sassano, Mario
    Mylvaganam, Thulasi
    IFAC PAPERSONLINE, 2023, 56 (02): : 1772 - 1777
  • [2] Nash Equilibria for Linear Quadratic Discrete-Time Dynamic Games via Iterative and Data-Driven Algorithms
    Nortmann, Benita
    Monti, Andrea
    Sassano, Mario
    Mylvaganam, Thulasi
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2024, 69 (10) : 6561 - 6575
  • [3] Doubly invariant equilibria of linear discrete-time games
    Caravani, P
    De Santis, E
    AUTOMATICA, 2002, 38 (09) : 1531 - 1538
  • [4] Feedback Nash equilibria for linear quadratic descriptor differential games
    Engwerda, J. C.
    Salmah
    AUTOMATICA, 2012, 48 (04) : 625 - 631
  • [5] Approximate Markov-Nash Equilibria for Discrete-Time Risk-Sensitive Mean-Field Games
    Saldi, Naci
    Basar, Tamer
    Raginsky, Maxim
    MATHEMATICS OF OPERATIONS RESEARCH, 2020, 45 (04) : 1596 - 1620
  • [6] Infinite Time Linear Quadratic Differential Games for Discrete-Time Singular Systems
    Wu, Tongxin
    Feng, Jun-e
    PROCEEDINGS OF THE 31ST CHINESE CONTROL CONFERENCE, 2012, : 57 - 61
  • [7] Feedback Nash Equilibria in Linear-Quadratic Difference Games With Constraints
    Reddy, Puduru Viswanadha
    Zaccour, Georges
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2017, 62 (02) : 590 - 604
  • [8] Infinite horizon linear quadratic differential games for discrete-time stochastic systems
    Sun H.
    Jiang L.
    Zhang W.
    Journal of Control Theory and Applications, 2012, 10 (03): : 391 - 396
  • [9] Linear Infinite Horizon Quadratic Differential Games for Stochastic Systems: Discrete-Time Case
    Sun, Huiying
    Jiang, Liuyang
    2011 CHINESE CONTROL AND DECISION CONFERENCE, VOLS 1-6, 2011, : 1733 - 1737
  • [10] Infinite horizon linear-quadratic Stackelberg games for discrete-time stochastic systems
    Mukaidani, Hiroaki
    Xu, Hua
    AUTOMATICA, 2017, 76 : 301 - 308