共 14 条
- [1] Normalized solution to p-Kirchhoff-type equation in RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^{N}$$\end{document} Analysis and Mathematical Physics, 2024, 14 (4)
- [2] Normalized solutions for a Choquard equation with exponential growth in R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^{2}$$\end{document} Zeitschrift für angewandte Mathematik und Physik, 2023, 74 (3)
- [3] Normalized Ground States for a Fractional Choquard System in R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}$$\end{document} The Journal of Geometric Analysis, 2024, 34 (7)
- [4] Normalized solutions for a biharmonic Choquard equation with exponential critical growth in R4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^4$$\end{document} Zeitschrift für angewandte Mathematik und Physik, 2024, 75 (2)
- [5] Positive solutions for discontinuous problems with applications to ϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi $$\end{document}-Laplacian equations Journal of Fixed Point Theory and Applications, 2018, 20 (4)
- [6] Multiplicity and concentration of solutions to a fractional NS\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N\over{S}$$\end{document}-Laplacian problem with exponential critical growth and potentials competition Acta Mathematica Scientia, 2025, 45 (3) : 885 - 918
- [7] Multi-bump solutions to Kirchhoff type equations with exponential critical growth in R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^2$$\end{document} Zeitschrift für angewandte Mathematik und Physik, 2024, 75 (4)
- [8] Infinitely many solutions for a new class of Schrödinger–Kirchhoff type equations in RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb R^N$$\end{document} involving the fractional p-Laplacian Journal of Elliptic and Parabolic Equations, 2021, 7 (1) : 243 - 267
- [9] Ground State Solutions for a Nonlocal Equation in R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^2$$\end{document} Involving Vanishing Potentials and Exponential Critical Growth Milan Journal of Mathematics, 2021, 89 (2) : 263 - 294
- [10] Multiple normalized solutions to critical Choquard equation involving fractional p-Laplacian in RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^{N}$$\end{document}Multiple normalized solutions to critical...X. Zhang et al. Analysis and Mathematical Physics, 2025, 15 (1)