Normalized Solutions to N-Laplacian Equations in RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^N$$\end{document} with Exponential Critical Growth

被引:0
|
作者
Jingbo Dou [1 ]
Ling Huang [2 ]
Xuexiu Zhong [3 ]
机构
[1] Shaanxi Normal University,School of Mathematics and Statistics
[2] South China Normal University,School of Mathematical Sciences
[3] South China Normal University,South China Research Center for Applied Mathematics and Interdisciplinary Studies
关键词
-Laplacian equations; Exponential critical growth; Normalized solution; Trudinger–Moser inequality; 35J92; 35B33; 47J30; 46E35;
D O I
10.1007/s12220-024-01771-x
中图分类号
学科分类号
摘要
In this paper, we are concerned with normalized solutions (u,λ)∈W1,N(RN)×R+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(u,\lambda )\in W^{1,N}(\mathbb {R}^N)\times \mathbb {R}^+$$\end{document} to the following N-Laplacian problem -div(|∇u|N-2∇u)+λ|u|N-2u=f(u)inRN,N≥2,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} -{\text {div}}(|\nabla u|^{N-2} \nabla u)+\lambda |u|^{N-2} u=f(u) \text{ in } \mathbb {R}^N,~N \ge 2, \end{aligned}$$\end{document}satisfying the normalization constraint ∫RN|u|Ndx=cN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\int _{\mathbb {R}^N}|u|^N\textrm{d}x=c^N$$\end{document}. The nonlinearity f(s) is an exponential critical growth function, i.e., behaves like exp(α|s|N/(N-1))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\exp (\alpha |s|^{N /(N-1)})$$\end{document} for some α>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha >0$$\end{document} as |s|→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|s| \rightarrow \infty $$\end{document}. Under some mild conditions, we show the existence of normalized mountain pass type solution via the variational method. We also emphasize the normalized ground state solution has a mountain pass characterization under some further assumption. Our existence results in present paper also solve a Soave’s type open problem (J Funct Anal 279(6):108610, 2020) on the nonlinearities having an exponential critical growth.
引用
收藏
相关论文
共 14 条