Iterative Methods with Self-Learning for Solving Nonlinear Equations

被引:0
作者
Popkov, Yu. S. [1 ,2 ]
机构
[1] Russian Acad Sci, Fed Res Ctr Comp Sci & Control, Moscow, Russia
[2] Russian Acad Sci, Trapeznikov Inst Control Sci, Moscow, Russia
关键词
nonlinear equation; iterative methods; reinforcement; Monte Carlo experiment;
D O I
10.1134/S0005117924050060
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper is devoted to the problem of solving a system of nonlinear equations with an arbitrary but continuous vector function on the left-hand side. By assumption, the values of its components are the only a priori information available about this function. An approximate solution of the system is determined using some iterative method with parameters, and the qualitative properties of the method are assessed in terms of a quadratic residual functional. We propose a self-learning (reinforcement) procedure based on auxiliary Monte Carlo (MC) experiments, an exponential utility function, and a payoff function that implements Bellman's optimality principle. A theorem on the strict monotonic decrease of the residual functional is proven.
引用
收藏
页码:472 / 476
页数:5
相关论文
共 18 条
  • [1] Bakhvalov N.S., 2003, Chislennye metody (Numerical Methods)
  • [2] DYNAMIC PROGRAMMING
    BELLMAN, R
    [J]. SCIENCE, 1966, 153 (3731) : 34 - &
  • [3] Bozinovski S, 1999, ARTIFICIAL NEURAL NETS AND GENETIC ALGORITHMS, P320
  • [4] Ivanov S., 2022, arXiv, DOI [DOI 10.48550/ARXIV.2201.09746, 10.48550/arXiv.2201.09746]
  • [5] Kohonen T., 2001, Self-Organizing Maps, P245, DOI [DOI 10.1007/978-3-642-56927-2, 10.1007/978-3-642-56927-2, 10.1007/978-3-642-56927-26, DOI 10.1007/978-3-642-56927-26]
  • [6] Krasnoselskii M.A., 1972, B., and Stecenko, V.Ja., DOI [10.1007/978-94-010-2715-1, DOI 10.1007/978-94-010-2715-1]
  • [7] Lyle Clare, 2022, PR MACH LEARN RES
  • [8] Human-level control through deep reinforcement learning
    Mnih, Volodymyr
    Kavukcuoglu, Koray
    Silver, David
    Rusu, Andrei A.
    Veness, Joel
    Bellemare, Marc G.
    Graves, Alex
    Riedmiller, Martin
    Fidjeland, Andreas K.
    Ostrovski, Georg
    Petersen, Stig
    Beattie, Charles
    Sadik, Amir
    Antonoglou, Ioannis
    King, Helen
    Kumaran, Dharshan
    Wierstra, Daan
    Legg, Shane
    Hassabis, Demis
    [J]. NATURE, 2015, 518 (7540) : 529 - 533
  • [9] Polyak B. T., 1987, Introduction to Optimization
  • [10] A STOCHASTIC APPROXIMATION METHOD
    ROBBINS, H
    MONRO, S
    [J]. ANNALS OF MATHEMATICAL STATISTICS, 1951, 22 (03): : 400 - 407