Surface-modified composite separator for lithium-ion battery with enhanced durability and security

被引:2
作者
Yao, Wangbing [1 ,3 ]
He, Xiaodong [3 ]
Zheng, Zhuoyuan [2 ]
Liu, Dongming [1 ]
Song, Jinbao [3 ]
Zhu, Yusong [2 ]
机构
[1] Anhui Univ Technol, Sch Mat Sci & Engn, Maanshan 243002, Anhui, Peoples R China
[2] Nanjing Tech Univ, Sch Energy Sci & Engn, Nanjing 211816, Jiangsu, Peoples R China
[3] Nanjing Got Battery Co LTD, Nanjing 211599, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Multifunctional binder; Dendrite-free; Long cycling lifespan; Nail penetration examination; POLYMER ELECTROLYTE; THERMAL-STABILITY; CONDUCTIVITY; PERFORMANCE;
D O I
10.1016/j.pnsc.2023.11.013
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In the long-term repeated cycling process of lithium-ion batteries (LIBs), the seamless transmission of lithium ions through the separator is crucial for the normal operation of the batteries. However, the irregular porous structure of the commonly used polyethylene (PE) separator leads to the accumulation of chaotic lithium ions and the formation of lithium dendrites, which pose serious safety risks. To enhance the safety performance of LIBs, we propose a novel composite separator design that incorporates ultrafine Al2O3 particles and a multifunctional gel polymer binder, which are mixed and coated onto PE membranes. This composite separator improves the wettability and lithium-ion transference number, resulting in impressive cycling lifespan and high average Coulombic efficiencies for large-scale prismatic LiFePO4//graphite batteries. These batteries exhibit approximately 80 % capacity retention over 1900 cycles with average Coulombic efficiencies of 99.95 %. Furthermore, even after 1000 cycles, LIBs fabricated with the composite separator pass the rigorous nail penetration test. These enhancements in safety performance offer promising prospects for achieving dendrite-free LIBs during long-term cycling processes.
引用
收藏
页码:804 / 811
页数:8
相关论文
共 30 条
  • [11] A review of recent developments in membrane separators for rechargeable lithium-ion batteries
    Lee, Hun
    Yanilmaz, Meltem
    Toprakci, Ozan
    Fu, Kun
    Zhang, Xiangwu
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (12) : 3857 - 3886
  • [12] Engineering stable electrode-separator interfaces with ultrathin conductive polymer layer for high-energy-density Li-S batteries
    Li, Yuanjian
    Wang, Wenyu
    Liu, Xiaoxiao
    Mao, Eryang
    Wang, Mintao
    Li, Guocheng
    Fu, Lin
    Li, Zhen
    Eng, Alex Yong Sheng
    Seh, Zhi Wei
    Sun, Yongming
    [J]. ENERGY STORAGE MATERIALS, 2019, 23 : 261 - 268
  • [13] Preparation and electrochemical characterization of ionic-conducting lithium lanthanum titanate oxide/polyacrylonitrile submicron composite fiber-based lithium-ion battery separators
    Liang, Yinzheng
    Ji, Liwen
    Guo, Bingkun
    Lin, Zhan
    Yao, Yingfang
    Li, Ying
    Alcoutlabi, Mataz
    Qiu, Yiping
    Zhang, Xiangwu
    [J]. JOURNAL OF POWER SOURCES, 2011, 196 (01) : 436 - 441
  • [14] A high-performance and environment-friendly gel polymer electrolyte for lithium ion battery based on composited lignin membrane
    Liu, Bo
    Huang, Yun
    Cao, Haijun
    Song, Amin
    Lin, Yuanhua
    Wang, Mingshan
    Li, Xing
    [J]. JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2018, 22 (03) : 807 - 816
  • [15] Synergism of Flame-Retardant, Self-Healing, High-Conductive and Polar to a Multi-Functional Binder for Lithium-Sulfur Batteries
    Liu, Mingliang
    Chen, Peng
    Pan, Xinchen
    Pan, Shencheng
    Zhang, Xiang
    Zhou, Yan
    Bi, Min
    Sun, Jingwen
    Yang, Shaolin
    Vasiliev, Aleksandr L.
    Kulesza, Pawel J.
    Ouyang, Xiaoping
    Xu, Jianbo
    Wang, Xin
    Zhu, Junwu
    Fu, Yongsheng
    [J]. ADVANCED FUNCTIONAL MATERIALS, 2022, 32 (36)
  • [16] Insights into the electrochemical performance of metal fluoride cathodes for lithium batteries
    Ma, Delong
    Zhang, Ruili
    Hu, Xun
    Chen, Yang
    Xiao, Chenfa
    He, Fei
    Zhang, Shu
    Chen, Jianbing
    Hu, Guangzhi
    [J]. ENERGY MATERIALS, 2022, 2 (04):
  • [17] Opportunities and Challenges of Lithium Ion Batteries in Automotive Applications
    Masias, Alvaro
    Marcicki, James
    Paxton, William A.
    [J]. ACS ENERGY LETTERS, 2021, 6 (02) : 621 - 630
  • [18] Binder-less chemical grafting of SiO2 nanoparticles onto polyethylene separators for lithium-ion batteries
    Na, Wonjun
    Koh, Ki Hwan
    Lee, Albert S.
    Cho, Sangho
    Ok, Byoeri
    Hwang, Suk-Won
    Lee, Jin Hong
    Koo, Chong Min
    [J]. JOURNAL OF MEMBRANE SCIENCE, 2019, 573 : 621 - 627
  • [19] Characterization and modeling of the thermal mechanics of lithium-ion battery cells
    Oh, Ki-Yong
    Epureanu, Bogdan I.
    [J]. APPLIED ENERGY, 2016, 178 : 633 - 646
  • [20] Fabrication and electrochemical properties of LATP/PVDF composite electrolytes for rechargeable lithium-ion battery
    Shi, Xiaojuan
    Ma, Nengyan
    Wu, Yixue
    Lu, Youhua
    Xiao, Qizhen
    Li, Zhaohui
    Lei, Gangtie
    [J]. SOLID STATE IONICS, 2018, 325 : 112 - 119