Exploring the Causal Effects of Gut Microbiota on Diabetic Nephropathy: A Two-Sample Mendelian Randomization Study

被引:2
作者
Chen, Kai [1 ,2 ]
Wang, Xu [1 ,2 ]
Shang, Zhihao [1 ,2 ]
Li, Qingyue [1 ,2 ]
Yao, Wenqiang [1 ,2 ]
Guo, Shaobo [1 ,2 ]
Guan, Yingting [1 ,2 ]
机构
[1] Nanjing Univ Chinese Med, Clin Med Coll 1, Nanjing, Peoples R China
[2] Jiangsu Prov Hosp Chinese Med, Nanjing, Peoples R China
关键词
Gut microbiota; diabetic nephropathy; genome-wide association study; mendelian randomization; causal effects; risk factors; protective factors; KIDNEY-DISEASE; RISK; INSTRUMENTS; HYPERTENSION; INFLAMMATION; ASSOCIATION; METABOLITES; HEALTH; BIAS;
D O I
10.2174/0113862073311197240425073859
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Background In recent years, an increasing number of studies have indicated a bidirectional relationship between gut microbiota and the kidneys (the gut-kidney axis). Currently, the potential causal relationship between gut microbiota and diabetic nephropathy remains unclear. This study explores the causal effects of gut microbiota on diabetic nephropathy through Mendelian randomization.Methods We carried out a comprehensive Mendelian Randomization (MR) analysis, drawing on the Genome-wide Association Study (GWAS) data for 196 varieties of gut microbiota and diabetic nephropathy. The primary analytical approach employed was the inverse-variance weighted, supplemented by the MR-Egger, weighted median, simple mode, and weighted mode. We rigorously assessed heterogeneity with Cochran's Q test and examined pleiotropy via MR-Egger intercept and MR-PRESSO tests. To ensure the reliability of our findings, we conducted funnel plots and leave-one-out analysis.Results Our study indicates a causal relationship between the increased risk of diabetic nephropathy and specific gut microbiota, including the Bacteroidia (P=0.01892; OR=1.593; 95%CI, 1.080-2.350), Bacteroidales (P=0.01892; OR=1.593; 95% CI, 1.080-2.350), and LachnospiraceaeUCG008 (P=0.01350; OR=1.452; 95% CI, 1.080-1.953). Conversely, potential protective factors include the Proteobacteria (P=0.00397; OR=0.528; 95% CI, 0.342-0.815), Gammaproteobacteria (P=0.00965; OR=0.474; 95% CI, 0.270-0.834), Lentisphaeria (P=0.04417; OR=0.756; 95% CI, 0.576-0.993), Victivallales (P=0.04417; OR=0.756; 95% CI, 0.576-0.993), and Dialister (P=0.00118; OR=0.513; 95%CI, 0.343-0.768).Conclusion This study confirms the causal effects of gut microbiota on diabetic nephropathy. Identifying the risk and protective factors within the gut microbiota for diabetic nephropathy offers fresh insights and novel approaches for preventing and treating this condition.
引用
收藏
页码:1026 / 1038
页数:13
相关论文
共 77 条
[1]   Targeting inflammation in diabetic nephropathy: a tale of hope [J].
Antonio Moreno, Juan ;
Gomez-Guerrero, Carmen ;
Mas, Sebastian ;
Belen Sanz, Ana ;
Lorenzo, Oscar ;
Ruiz-Ortega, Marta ;
Opazo, Lucas ;
Mezzano, Sergio ;
Egido, Jesus .
EXPERT OPINION ON INVESTIGATIONAL DRUGS, 2018, 27 (11) :917-930
[2]   The Gut Microbiome in Hypertension Recent Advances and Future Perspectives [J].
Avery, Ellen G. ;
Bartolomaeus, Hendrik ;
Maifeld, Andras ;
Marko, Lajos ;
Wiig, Helge ;
Wilck, Nicola ;
Rosshart, Stephan P. ;
Forslund, Sofia K. ;
Mueller, Dominik N. .
CIRCULATION RESEARCH, 2021, 128 (07) :934-950
[3]   Modelling diabetic nephropathy in mice [J].
Azushima, Kengo ;
Gurley, Susan B. ;
Coffman, Thomas M. .
NATURE REVIEWS NEPHROLOGY, 2018, 14 (01) :48-56
[4]   Antibiotics, birth mode, and diet shape microbiome maturation during early life [J].
Bokulich, Nicholas A. ;
Chung, Jennifer ;
Battaglia, Thomas ;
Henderson, Nora ;
Jay, Melanie ;
Li, Huilin ;
Lieber, Arnon D. ;
Wu, Fen ;
Perez-Perez, Guillermo I. ;
Chen, Yu ;
Schweizer, William ;
Zheng, Xuhui ;
Contreras, Monica ;
Dominguez-Bello, Maria Gloria ;
Blaser, Martin J. .
SCIENCE TRANSLATIONAL MEDICINE, 2016, 8 (343)
[5]   Consistent Estimation in Mendelian Randomization with Some Invalid Instruments Using a Weighted Median Estimator [J].
Bowden, Jack ;
Smith, George Davey ;
Haycock, Philip C. ;
Burgess, Stephen .
GENETIC EPIDEMIOLOGY, 2016, 40 (04) :304-314
[6]   Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression [J].
Bowden, Jack ;
Smith, George Davey ;
Burgess, Stephen .
INTERNATIONAL JOURNAL OF EPIDEMIOLOGY, 2015, 44 (02) :512-525
[7]  
Burgess S, 2017, EUR J EPIDEMIOL, V32, P377, DOI 10.1007/s10654-017-0255-x
[8]   Mendelian Randomization Analysis With Multiple Genetic Variants Using Summarized Data [J].
Burgess, Stephen ;
Butterworth, Adam ;
Thompson, Simon G. .
GENETIC EPIDEMIOLOGY, 2013, 37 (07) :658-665
[9]   Avoiding bias from weak instruments in Mendelian randomization studies [J].
Burgess, Stephen ;
Thompson, Simon G. .
INTERNATIONAL JOURNAL OF EPIDEMIOLOGY, 2011, 40 (03) :755-764
[10]   Gut microbial metabolites in obesity, NAFLD and T2DM [J].
Canfora, Emanuel E. ;
Meex, Ruth C. R. ;
Venema, Koen ;
Blaak, Ellen E. .
NATURE REVIEWS ENDOCRINOLOGY, 2019, 15 (05) :261-273