Time Evolution of the Boltzmann Entropy for a Nonequilibrium Dilute Gas

被引:1
作者
Garrido, Pedro L. [1 ]
Goldstein, Sheldon [2 ]
Huse, David A. [3 ]
Lebowitz, Joel L. [2 ,4 ]
机构
[1] Univ Granada, Inst Carlos Theoret & Computat Phys 1, Granada, Spain
[2] Rutgers State Univ, Dept Math, Piscataway, NJ 08854 USA
[3] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA
[4] Rutgers State Univ, Dept Phys, Piscataway, NJ 08854 USA
关键词
Nonequilibrium; Boltzmann entropy;
D O I
10.1007/s10955-024-03311-x
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate the time evolution of the Boltzmann entropy of a dilute gas of N particles, N >> 1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N\gg 1$$\end{document}, as it undergoes a free expansion doubling its volume. The microstate of the system changes in time via Hamiltonian dynamics. Its entropy, at any time t, is given by the logarithm of the phase space volume of all the microstates giving rise to its macrostate at time t. The macrostates that we consider are defined by coarse graining the one-particle phase space into cells Delta alpha\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta _\alpha $$\end{document}. The initial and final macrostates of the system are thermal equilibrium states in volumes V and 2V, with the same energy E and particle number N. Their entropy per particle is given, for sufficiently large systems, by the thermodynamic entropy as a function of the particle and energy density, whose leading term is independent of the size of the Delta alpha\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta _\alpha $$\end{document}. The intermediate (non-equilibrium) entropy does however depend on the size of the cells Delta alpha\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta _\alpha $$\end{document}. Its change with time is due to (i) dispersal in physical space from free motion and to (ii) the collisions between particles which change their velocities. The former depends strongly on the size of the velocity coarse graining Delta v\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta v$$\end{document}: it produces entropy at a rate proportional to Delta v\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta v$$\end{document}. This dependence is investigated numerically and analytically for a dilute two-dimensional gas of hard discs. It becomes significant when the mean free path between collisions is of the same order or larger than the length scale of the initial spatial inhomogeneity. In the opposite limit, the rate of entropy production is essentially independent of Delta v\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta v$$\end{document} and is given by the Boltzmann equation for the limit Delta v -> 0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta v\rightarrow 0$$\end{document}. We show that when both processes are active the time dependence of the entropy has a scaling form involving the ratio of the rates of its production by the two processes.
引用
收藏
页数:18
相关论文
共 17 条
[1]  
Bodineau T., 2023, IAMP Bulletin, P6
[2]  
Boltzmann L., 1964, VORLESUNGEN GASTHEOR
[3]  
Callen HerbertB., 1991, THERMODYNAMICS INTRO
[4]  
Cercignani C., 2013, MATH THEORY DILUTE G
[5]  
Cercignani C., 1988, BOLTZMANN EQUATION I, DOI DOI 10.1007/978-1-4612-1039-9
[6]   Boltzmann's Entropy During Free Expansion of an Interacting Gas [J].
Chakraborti, Subhadip ;
Dhar, Abhishek ;
Kundu, Anupam .
JOURNAL OF STATISTICAL PHYSICS, 2023, 190 (04)
[7]   Entropy growth during free expansion of an ideal gas [J].
Chakraborti, Subhadip ;
Dhar, Abhishek ;
Goldstein, Sheldon ;
Kundu, Anupam ;
Lebowitz, Joel L. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2022, 55 (39)
[8]   A Rigourous Demonstration of the Validity of Boltzmann's Scenario for the Spatial Homogenization of a Freely Expanding Gas and the Equilibration of the Kac Ring [J].
De Bievre, S. ;
Parris, P. E. .
JOURNAL OF STATISTICAL PHYSICS, 2017, 168 (04) :772-793
[9]  
de Groot S.R., 1962, Non-Equilibrium Thermodynamics
[10]   On the (Boltzmann) entropy of non-equilibrium systems [J].
Goldstein, S ;
Lebowitz, JL .
PHYSICA D-NONLINEAR PHENOMENA, 2004, 193 (1-4) :53-66