Laser powder bed fusion of AISI 316L lattice structures for biomedical applications

被引:4
作者
Lannunziata E. [1 ]
Saboori A. [1 ]
Galati M. [1 ]
Iuliano L. [1 ]
机构
[1] Integrated Additive Manufacturing Center, Department Management and Production Engineering, Politecnico di Torino, Corso Duca Degli Abruzzi 24, Torino
来源
Materials Today: Proceedings | 2022年 / 70卷
关键词
Additive manufacturing; Laser powder bed fusion; Lattice structures; Mechanical performance;
D O I
10.1016/j.matpr.2022.09.267
中图分类号
学科分类号
摘要
Additive Manufacturing (AM) is a class of manufacturing technologies in which a complex part can be built directly in its final or semi-final shape through a layerwise process. These technologies enable the production of engineered materials with a high level of complexity, of which lattice structures are one of the most promising structures for several applications. On the other hand, cellular structures have been extensively studied over the last few decades, mainly owing to their unique performances in energy absorption, thermal and electrical conductivity, and acoustic. The biggest challenge in cellular solids is the replication of their cell geometries with complex shapes and often small dimensions. Therefore, AM methods that facilitate the fabrication of nature-inspired geometries devices could play a key role in developing new cellular structures for various applications. Hence, the present paper aims to manufacture and characterise AISI 316 L lattice structures produced by the laser powder bed fusion process. Two different types of structures are considered: the strut-based based on strut elements and the triply periodic minimal surfaces generated from trigonometric functions. Statistic compression tests were performed to investigate the influence of cell geometries, unit cell size, relative density, and volume fraction on mechanical properties, such as Youngs’ modulus, ultimate compressive strength, and the amount of energy absorbed. © 2022
引用
收藏
页码:345 / 351
页数:6
相关论文
共 50 条
  • [41] On the development of part-scale FEM modeling for laser powder bed fusion of AISI 316L stainless steel with experimental verification
    Mahmood, Muhammad Arif
    Rehman, Asif Ur
    Azeem, M. Mustafa
    Alkhouzaam, Abedalkader
    Khraisheh, Marwan
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2023, 127 (5-6) : 2229 - 2255
  • [42] Effect of Particle size of monomodal 316L powder on powder layer density in powder bed fusion
    Haferkamp, Lukas
    Spierings, Adriaan
    Rusch, Marco
    Jermann, Dominik
    Spurek, Marvin A.
    Wegener, Konrad
    PROGRESS IN ADDITIVE MANUFACTURING, 2021, 6 (03) : 367 - 374
  • [43] Corrosion Fatigue Characteristics of 316L Stainless Steel Fabricated by Laser Powder Bed Fusion
    Gnanasekaran, Balachander
    Song, Jie
    Vasudevan, Vijay
    Fu, Yao
    METALS, 2021, 11 (07)
  • [44] Increasing the Productivity of Laser Powder Bed Fusion for Stainless Steel 316L through Increased Layer Thickness
    Leicht, Alexander
    Fischer, Marie
    Klement, Uta
    Nyborg, Lars
    Hryha, Eduard
    JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2021, 30 (01) : 575 - 584
  • [45] Heat Treatment Effect on the Corrosion Resistance of 316L Stainless Steel Produced by Laser Powder Bed Fusion
    Sangoi, Kevin
    Nadimi, Mahdi
    Song, Jie
    Fu, Yao
    METALS, 2025, 15 (01)
  • [46] Strength Enhancement of Laser Powder Bed Fusion 316L by Addition of Nano TiC Particles
    Liu, Yanyan
    Xie, Deqiao
    Lv, Fei
    MATERIALS, 2024, 17 (05)
  • [47] A Comparative Study on Laser Powder Bed Fusion of Differently Atomized 316L Stainless Steel
    Grzelak, Krzysztof
    Bielecki, Marcin
    Kluczynski, Janusz
    Szachogluchowicz, Ireneusz
    Sniezek, Lucjan
    Torzewski, Janusz
    Luszczek, Jakub
    Sloboda, Lukasz
    Wachowski, Marcin
    Komorek, Zenon
    Malek, Marcin
    Zygmuntowicz, Justyna
    MATERIALS, 2022, 15 (14)
  • [48] Evolution of 316L stainless steel feedstock due to laser powder bed fusion process
    Heiden, Michael J.
    Deibler, Lisa A.
    Rodelas, Jeff M.
    Koepke, Josh R.
    Tung, Dan J.
    Saiz, David J.
    Jared, Bradley H.
    ADDITIVE MANUFACTURING, 2019, 25 : 84 - 103
  • [49] A comprehensive characterization of virgin and recycled 316L powders during laser powder bed fusion
    Lu, Chao
    Zhang, Ruihua
    Xiao, Mengzhi
    Wei, Xiaohong
    Yin, Yan
    Qu, Yuebo
    Li, Hui
    Liu, Pengyu
    Qiu, Xiaopan
    Guo, Tieming
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2022, 18 : 2292 - 2309
  • [50] Microstructural characterization and mechanical behaviour of laser powder Bed Fusion stainless steel 316L
    Crisafulli, Davide
    Fintova, Stanislava
    Santonocito, Dario
    D'Andrea, Danilo
    THEORETICAL AND APPLIED FRACTURE MECHANICS, 2024, 131