Reliability of Machine Learning in functional assessment in cardiac magnetic resonance imaging

被引:0
作者
Danilo Boccetti [1 ]
Stefania Lamja [1 ]
Pierpaolo Palumbo [1 ]
Antonio Barile [1 ]
Ernesto Di Cesare [1 ]
机构
[1] University of L’Aquila,Department of Biotechnological and Applied Clinical Sciences
来源
Journal of Medical Imaging and Interventional Radiology | / 11卷 / 1期
关键词
Artificial Intelligence; Machine Learning; Cardiac imaging; MRI;
D O I
10.1007/s44326-024-00032-z
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
[31]   Separating depressive comorbidity from panic disorder: A combined functional magnetic resonance imaging and machine learning approach [J].
Lueken, Ulrike ;
Straube, Benjamin ;
Yang, Yunbo ;
Hahn, Tim ;
Beesdo-Baum, Katja ;
Wittchen, Hans-Ulrich ;
Konrad, Carsten ;
Stroehle, Andreas ;
Wittmann, Andre ;
Gerlach, Alexander L. ;
Pfleiderer, Bettina ;
Arolt, Volker ;
Kircher, Tilo .
JOURNAL OF AFFECTIVE DISORDERS, 2015, 184 :182-192
[32]   Lateralization of temporal lobe epilepsy based on resting-state functional magnetic resonance imaging and machine learning [J].
Yang, Zhengyi ;
Choupan, Jeiran ;
Reutens, David ;
Hocking, Julia .
FRONTIERS IN NEUROLOGY, 2015, 6
[33]   Assessment of cardiac function in three mouse dystrophinopathies by magnetic resonance imaging [J].
Verhaart, Ingrid E. C. ;
van Duijn, Rianne J. M. ;
den Adel, Brigit ;
Roest, Arno A. W. ;
Verschuuren, Jan J. G. M. ;
Aartsma-Rus, Annemieke ;
van der Weerd, Louise .
NEUROMUSCULAR DISORDERS, 2012, 22 (05) :418-426
[34]   Identification and Assessment of Cardiac Amyloidosis by Myocardial Strain Analysis of Cardiac Magnetic Resonance Imaging [J].
Oda, Seitaro ;
Utsunomiya, Daisuke ;
Nakaura, Takeshi ;
Yuki, Hideaki ;
Kidoh, Masafumi ;
Morita, Kosuke ;
Takashio, Seiji ;
Yamamuro, Megumi ;
Izumiya, Yasuhiro ;
Hirakawa, Kyoko ;
Ishida, Toshifumi ;
Tsujita, Kenichi ;
Ueda, Mitsuharu ;
Yamashita, Taro ;
Ando, Yukio ;
Hata, Hiroyuki ;
Yamashita, Yasuyuki .
CIRCULATION JOURNAL, 2017, 81 (07) :1014-1021
[35]   Clinical Implications of Machine Learning, Artificial Intelligence, and Radiomics in Cardiac Imaging [J].
Yum, Brian ;
Adelsheimer, Andrew ;
Tafreshi, Romina ;
Hagopian, Raffi ;
Kim, Jiwon .
CURRENT TREATMENT OPTIONS IN CARDIOVASCULAR MEDICINE, 2020, 22 (11)
[36]   Clinical Implications of Machine Learning, Artificial Intelligence, and Radiomics in Cardiac Imaging [J].
Brian Yum ;
Andrew Adelsheimer ;
Romina Tafreshi ;
Raffi Hagopian ;
Jiwon Kim .
Current Treatment Options in Cardiovascular Medicine, 2020, 22
[37]   Assessment of haemodynamic effects of surgical correction for severe functional tricuspid regurgitation: cardiac magnetic resonance imaging study [J].
Kim, Hyung-Kwan ;
Kim, Yong-Jin ;
Park, Eun-Ah ;
Bae, Ji-Seon ;
Lee, Whal ;
Kim, Kyung-Hwan ;
Kim, Ki-Bong ;
Sohn, Dae-Won ;
Ahn, Hyuk ;
Park, Jae-Hyung ;
Park, Young-Bae .
EUROPEAN HEART JOURNAL, 2010, 31 (12) :1520-1528
[38]   Machine learning prediction of brain metastasis invasion pattern on brain magnetic resonance imaging scans [J].
Najafian, Keyhan ;
Rehany, Benjamin ;
Nowakowski, Alexander ;
Ghazimoghadam, Saba ;
Pierre, Kevin ;
Zakarian, Rita ;
Al-Saadi, Tariq ;
Reinhold, Caroline ;
Babajani-Feremi, Abbas ;
Wong, Joshua K. ;
Guiot, Marie-Christine ;
Lacasse, Marie-Constance ;
Lam, Stephanie ;
Siegel, Peter M. ;
Petrecca, Kevin ;
Dankner, Matthew ;
Forghani, Reza .
NEURO-ONCOLOGY ADVANCES, 2024, 6 (01)
[39]   Magnetic resonance imaging biomarkers for the early diagnosis of Alzheimer's disease: a machine learning approach [J].
Salvatore, Christian ;
Cerasa, Antonio ;
Battista, Petronilla ;
Gilardi, Maria C. ;
Quattrone, Aldo ;
Castiglioni, Isabella .
FRONTIERS IN NEUROSCIENCE, 2015, 9
[40]   The Application of a Machine Learning-Based Brain Magnetic Resonance Imaging Approach in Major Depression [J].
Na, Kyoung-Sae ;
Kim, Yong-Ku .
MAJOR DEPRESSIVE DISORDER: RETHINKING AND UNDERSTANDING RECENT DISCOVERIES, 2021, 1305 :57-69