Fine-Grained Fragment Diffusion for Cross-Domain Crowd Counting

被引:12
|
作者
Zhu, Huilin [1 ]
Yuan, Jingling [1 ]
Yang, Zhengwei [2 ]
Zhong, Xian [1 ]
Wang, Zheng [2 ]
机构
[1] Wuhan Univ Technol, Sch Comp Sci & Artificial Intelligence, Wuhan, Peoples R China
[2] Wuhan Univ, Sch Comp Sci, Wuhan, Peoples R China
来源
PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2022 | 2022年
基金
中国国家自然科学基金;
关键词
Crowd Counting; Cross-domain; Distribution Alignment; Fine-Grained Similarity;
D O I
10.1145/3503161.3548298
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Deep learning improves the performance of crowd counting, but model migration remains a tricky challenge. Due to the reliance on training data and inherent domain shift, model application to unseen scenarios is tough. To facilitate the problem, this paper proposes a cross-domain Fine-Grained Fragment Diffusion model (FGFD) that explores feature-level fine-grained similarities of crowd distributions between different fragments to bridge the cross-domain gap (content-level coarse-grained dissimilarities). Specifically, we obtain features of fragments in both source and target domains, and then perform the alignment of the crowd distribution across different domains. With the assistance of the diffusion of crowd distribution, it is able to label unseen domain fragments and make source domain close to target domain, which is fed back to the model to reduce the domain discrepancy. By monitoring the distribution alignment, the distribution perception model is updated, then the performance of distribution alignment is improved. During the model inference, the gap between different domains is gradually alleviated. Multiple sets of migration experiments show that the proposed method achieves competitive results with other state-of-the-art domain-transfer methods.
引用
收藏
页码:5659 / 5668
页数:10
相关论文
共 36 条
  • [31] Deep attentional fine-grained similarity network with adversarial learning for cross-modal retrieval
    Cheng, Qingrong
    Gu, Xiaodong
    MULTIMEDIA TOOLS AND APPLICATIONS, 2020, 79 (41-42) : 31401 - 31428
  • [32] Adversarial Diffusion Probability Model For Cross-domain Speaker Verification Integrating Contrastive Loss
    Su, Xinmei
    Xie, Xiang
    Zhang, Fengrun
    Hu, Chenguang
    INTERSPEECH 2023, 2023, : 5336 - 5340
  • [33] Deep Self-Supervised Hashing With Fine-Grained Similarity Mining for Cross-Modal Retrieval
    Han, Lijun
    Wang, Renlin
    Chen, Chunlei
    Zhang, Huihui
    Zhang, Yujie
    Zhang, Wenfeng
    IEEE ACCESS, 2024, 12 : 31756 - 31770
  • [34] A fine-tuning prototypical network for few-shot cross-domain fault diagnosis
    Zhong, Jianhua
    Gu, Kairong
    Jiang, Haifeng
    Liang, Wei
    Zhong, Shuncong
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2024, 35 (11)
  • [35] ReFine: Re-randomization before Fine-tuning for Cross-domain Few-shot Learning
    Oh, Jaehoon
    Kim, Sungnyun
    Ho, Namgyu
    Kim, Jin-Hwa
    Song, Hwanjun
    Yun, Se-Young
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2022, 2022, : 4359 - 4363
  • [36] CRA-DIFFUSE: IMPROVED CROSS-DOMAIN SPEECH ENHANCEMENT BASED ON DIFFUSION MODEL WITH T-F DOMAIN PRE-DENOISING
    Qiu, Zhibin
    Guo, Yachao
    Fu, Mengfan
    Huang, Hao
    Hu, Ying
    He, Liang
    Sun, Fuchun
    2023 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, ICME, 2023, : 1709 - 1714