Simple extension of the plane-wave final state in photoemission: Bringing understanding to the photon-energy dependence of two-dimensional materials

被引:2
作者
Kern C.S. [1 ]
Haags A. [2 ,3 ,4 ]
Egger L. [1 ]
Yang X. [2 ,3 ,4 ]
Kirschner H. [5 ]
Wolff S. [6 ,7 ]
Seyller T. [6 ,7 ]
Gottwald A. [5 ]
Richter M. [5 ]
De Giovannini U. [8 ,9 ]
Rubio A. [8 ,10 ]
Ramsey M.G. [1 ]
Bocquet F.C. [2 ,3 ]
Soubatch S. [2 ,3 ]
Tautz F.S. [2 ,3 ,4 ]
Puschnig P. [1 ]
Moser S. [11 ]
机构
[1] Institute of Physics, NAWI Graz, University of Graz, Graz
[2] Peter Grünberg Institut (PGI-3), Forschungszentrum Jülich, Jülich
[3] Jülich Aachen Research Alliance (JARA), Fundamentals of Future Information Technology, Jülich
[4] Experimental Physics IV A, RWTH Aachen University, Aachen
[5] Physikalisch-Technische Bundesanstalt (PTB), Berlin
[6] Institute of Physics, Chemnitz University of Technology, Chemnitz
[7] Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, Chemnitz
[8] Max Planck Institute for the Structure and Dynamics of Matter, Hamburg
[9] Dipartimento di Fisica e Chimica-Emilio Segrè, Università Degli Studi di Palermo, Palermo
[10] Center for Computational Quantum Physics (CCQ), Flatiron Institute, New York, 10010, NY
[11] Physikalisches Institut and Würzburg-Dresden Cluster of Excellence Ct.qmat, Universität Würzburg, Würzburg
来源
Physical Review Research | 2023年 / 5卷 / 03期
基金
奥地利科学基金会;
关键词
Compendex;
D O I
10.1103/PhysRevResearch.5.033075
中图分类号
学科分类号
摘要
Angle-resolved photoemission spectroscopy (ARPES) is a method that measures orbital and band structure contrast through the momentum distribution of photoelectrons. Its simplest interpretation is obtained in the plane-wave approximation, according to which photoelectrons propagate freely to the detector. The photoelectron momentum distribution is then essentially given by the Fourier transform of the real-space orbital. While the plane-wave approximation is remarkably successful in describing the momentum distributions of aromatic compounds, it generally fails to capture kinetic-energy-dependent final-state interference and dichroism effects. Focusing our present study on quasi-freestanding monolayer graphene as the archetypical two-dimensional (2D) material, we observe an exemplary Ekin-dependent modulation of, and a redistribution of spectral weight within, its characteristic horseshoe signature around the K̄ and K̄′ points: both effects indeed cannot be rationalized by the plane-wave final state. Our data are, however, in remarkable agreement with ab initio time-dependent density functional simulations of a freestanding graphene layer and can be explained by a simple extension of the plane-wave final state, permitting the two dipole-allowed partial waves emitted from the C 2pz orbitals to scatter in the potential of their immediate surroundings. Exploiting the absolute photon flux calibration of the Metrology Light Source, this scattered-wave approximation allows us to extract Ekin-dependent amplitudes and phases of both partial waves directly from photoemission data. The scattered-wave approximation thus represents a powerful yet intuitive refinement of the plane-wave final state in photoemission of 2D materials and beyond. © 2023 authors. Published by the American Physical Society. Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.
引用
收藏
相关论文
共 69 条
  • [1] Hufner S., Photoelectron Spectroscopy, (2003)
  • [2] Damascelli A., Probing the electronic structure of complex systems by ARPES, Phys. Scr, T109, (2004)
  • [3] Sobota J. A., He Y., Shen Z.-X., Angle-resolved photoemission studies of quantum materials, Rev. Mod. Phys, 93, (2021)
  • [4] Puschnig P., Berkebile S., Fleming A. J., Koller G., Emtsev K., Seyller T., Riley J. D., Ambrosch-Draxl C., Netzer F. P., Ramsey M. G., Reconstruction of molecular orbital densities from photoemission data, Science, 326, (2009)
  • [5] Moser S., An experimentalist's guide to the matrix element in angle resolved photoemission, J. Electron Spectrosc. Relat. Phenom, 214, (2017)
  • [6] Feibelman P. J., Eastman D. E., Photoemission spectroscopy-Correspondence between quantum theory and experimental phenomenology, Phys. Rev. B, 10, (1974)
  • [7] Gadzuk J. W., Surface molecules and chemisorption. II. Photoemission angular distributions, Phys. Rev. B, 10, (1974)
  • [8] Woodruff P., Modern Techniques of Surface Science, (2016)
  • [9] Puschnig P., Ramsey M., Photoemission tomography: Valence band photoemission as a quantitative method for investigating molecular films, Encyclopedia of Interfacial Chemistry, pp. 380-391, (2018)
  • [10] Dauth M., Korzdorfer T., Kummel S., Ziroff J., Wiessner M., Scholl A., Reinert F., Arita M., Shimada K., Orbital Density Reconstruction for Molecules, Phys. Rev. Lett, 107, (2011)