Life-span of solutions for a nonlinear parabolic system

被引:0
作者
Tayachi, Slim [1 ]
机构
[1] Univ Tunis Manar, Fac Sci Tunis, Dept Math, Lab Equat Derivees Partielles LR03ES04, Tunis 2092, Tunisia
来源
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS | 2024年 / 31卷 / 04期
关键词
Nonlinear parabolic systems; Reaction-diffusion systems; Local existence; Blow-up; Life-span; WEAKLY COUPLED SYSTEM; POINT BLOW-UP; GLOBAL EXISTENCE; LOCAL EXISTENCE; BEHAVIOR; EQUATIONS; TIME; NONEXISTENCE; BOUNDS;
D O I
10.1007/s00030-024-00952-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we establish new and optimal estimates for the existence time of the maximal solutions to the nonlinear parabolic system partial derivative(t)u = Delta u + |v|(p-1)v, partial derivative(t)v=Delta v + |u|(q-1)u, q >= p >= 1, q > 1 with initial values in Lebesgue or weighted Lebesgue spaces. The lower-bound estimates hold without any restriction on the sign or the size of the components of the initial data. To prove the upper-bound estimates, necessary conditions for the existence of nonnegative solutions are established. These necessary conditions allow us to give new sufficient conditions for finite time blow-up with initial values having critical decay at infinity.
引用
收藏
页数:44
相关论文
共 50 条
  • [31] BLOW-UP AND LIFE SPAN ESTIMATES FOR A CLASS OF NONLINEAR DEGENERATE PARABOLIC SYSTEM WITH TIME-DEPENDENT COEFFICIENTS
    夏安银
    樊明书
    李珊
    [J]. Acta Mathematica Scientia, 2017, 37 (04) : 974 - 984
  • [32] Life, span and a new critical exponent for a degenerate parabolic equation
    Li, YH
    Mu, CL
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2004, 207 (02) : 392 - 406
  • [33] Life span of solutions to a nonlocal in time nonlinear fractional Schrodinger equation
    Kirane, M.
    Nabti, A.
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2015, 66 (04): : 1473 - 1482
  • [34] The Life Span of Classical Solutions to Nonlinear Wave Equations with Weighted Terms in Three Space Dimensions
    Wang, Hu Sheng
    Lu, Fan
    [J]. ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2024, 40 (12) : 2984 - 3002
  • [35] Partial regularity of weak solutions and life-span of smooth solutions to a biological network formulation model
    Xu, Xiangsheng
    [J]. PARTIAL DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2020, 1 (04):
  • [36] Analysis of Economic Life-span of Equipment
    Qi, Zhongxin
    Yu, Zhehuan
    Li, Yuhao
    [J]. 2016 5TH INTERNATIONAL CONFERENCE ON EDUCATION AND EDUCATION MANAGEMENT (EEM 2016), 2016, 92 : 286 - 288
  • [37] A LIFE-SPAN APPROACH TO OBJECT PERMANENCE
    SUBBOTSKII, EV
    [J]. HUMAN DEVELOPMENT, 1991, 34 (03) : 125 - 137
  • [38] Future time perspective and life-span
    Francisco Diaz-Morales, Juan
    [J]. ANALES DE PSICOLOGIA, 2006, 22 (01): : 52 - 59
  • [39] A high-throughput screening system for genes extending life-span
    Chen, CY
    Dewaele, S
    Braeckman, B
    Desmyter, L
    Verstraelen, J
    Borgonie, G
    Vanfleteren, J
    Contreras, R
    [J]. EXPERIMENTAL GERONTOLOGY, 2003, 38 (10) : 1051 - 1063
  • [40] LIFE SPAN OF BLOW-UP SOLUTIONS FOR HIGHER-ORDER SEMILINEAR PARABOLIC EQUATIONS
    Sun, Fuqin
    [J]. ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2010,