Life-span of solutions for a nonlinear parabolic system

被引:0
作者
Tayachi, Slim [1 ]
机构
[1] Univ Tunis Manar, Fac Sci Tunis, Dept Math, Lab Equat Derivees Partielles LR03ES04, Tunis 2092, Tunisia
来源
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS | 2024年 / 31卷 / 04期
关键词
Nonlinear parabolic systems; Reaction-diffusion systems; Local existence; Blow-up; Life-span; WEAKLY COUPLED SYSTEM; POINT BLOW-UP; GLOBAL EXISTENCE; LOCAL EXISTENCE; BEHAVIOR; EQUATIONS; TIME; NONEXISTENCE; BOUNDS;
D O I
10.1007/s00030-024-00952-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we establish new and optimal estimates for the existence time of the maximal solutions to the nonlinear parabolic system partial derivative(t)u = Delta u + |v|(p-1)v, partial derivative(t)v=Delta v + |u|(q-1)u, q >= p >= 1, q > 1 with initial values in Lebesgue or weighted Lebesgue spaces. The lower-bound estimates hold without any restriction on the sign or the size of the components of the initial data. To prove the upper-bound estimates, necessary conditions for the existence of nonnegative solutions are established. These necessary conditions allow us to give new sufficient conditions for finite time blow-up with initial values having critical decay at infinity.
引用
收藏
页数:44
相关论文
共 40 条
[11]   Lifespan of Solutions for a Weakly Coupled System of Semilinear Heat Equations [J].
Fujiwara, Kazumasa ;
Ikeda, Masahiro ;
Wakasugi, Yuta .
TOKYO JOURNAL OF MATHEMATICS, 2020, 43 (01) :163-180
[12]   Construction and stability of blowup solutions for a non-variational semilinear parabolic system [J].
Ghoul, Tej-Eddine ;
Van Tien Nguyen ;
Zaag, Hatem .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2018, 35 (06) :1577-1630
[13]  
Huang Q., 1998, Hokkaido Math. J., V27, P393
[14]   GLOBAL EXISTENCE, LARGE TIME BEHAVIOR AND LIFE-SPAN OF SOLUTIONS OF A SEMILINEAR PARABOLIC CAUCHY-PROBLEM [J].
LEE, TY ;
NI, WM .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1992, 333 (01) :365-378
[15]   SUBSOLUTIONS AND SUPER SOLUTIONS TO SYSTEMS OF PARABOLIC EQUATIONS WITH APPLICATIONS TO GENERALIZED FUJITA-TYPE SYSTEMS [J].
LU, G ;
SLEEMAN, BD .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 1994, 17 (13) :1005-1016
[16]   Improved conditions for single-point blow-up in reaction-diffusion systems [J].
Mahrnoudi, Nejib ;
Souplet, Philippe ;
Tayachi, Slim .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 259 (05) :1898-1932
[17]  
Mochizuki K., 1998, ADV MATH APPL SCI, V48, P175
[18]   The heat semigroup on sectorial domains, highly singular initial values and applications [J].
Mouajria, Hattab ;
Tayachi, Slim ;
Weissler, Fred B. .
JOURNAL OF EVOLUTION EQUATIONS, 2016, 16 (02) :341-364
[19]   Lower bounds for blow-up time in parabolic problems under Dirichlet conditions [J].
Payne, L. E. ;
Schaefer, P. W. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 328 (02) :1196-1205
[20]   Admissible LP norms for local existence and for continuation in semilinear parabolic systems are not the same [J].
Quittner, P ;
Souplet, P .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2001, 131 :1435-1456