Life-span of solutions for a nonlinear parabolic system

被引:0
作者
Tayachi, Slim [1 ]
机构
[1] Univ Tunis Manar, Fac Sci Tunis, Dept Math, Lab Equat Derivees Partielles LR03ES04, Tunis 2092, Tunisia
来源
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS | 2024年 / 31卷 / 04期
关键词
Nonlinear parabolic systems; Reaction-diffusion systems; Local existence; Blow-up; Life-span; WEAKLY COUPLED SYSTEM; POINT BLOW-UP; GLOBAL EXISTENCE; LOCAL EXISTENCE; BEHAVIOR; EQUATIONS; TIME; NONEXISTENCE; BOUNDS;
D O I
10.1007/s00030-024-00952-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we establish new and optimal estimates for the existence time of the maximal solutions to the nonlinear parabolic system partial derivative(t)u = Delta u + |v|(p-1)v, partial derivative(t)v=Delta v + |u|(q-1)u, q >= p >= 1, q > 1 with initial values in Lebesgue or weighted Lebesgue spaces. The lower-bound estimates hold without any restriction on the sign or the size of the components of the initial data. To prove the upper-bound estimates, necessary conditions for the existence of nonnegative solutions are established. These necessary conditions allow us to give new sufficient conditions for finite time blow-up with initial values having critical decay at infinity.
引用
收藏
页数:44
相关论文
共 40 条
[1]   Liouville theorems and blow up behaviour in semilinear reaction diffusion systems [J].
Andreucci, D ;
Herrero, MA ;
Velazquez, JJL .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1997, 14 (01) :1-53
[2]  
Aoyagi Y, 2007, DIFFER INTEGRAL EQU, V20, P1321
[3]   Existence and nonexistence of global solutions of higher-order parabolic problems with slow decay initial data [J].
Caristi, G ;
Mitidieri, E .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2003, 279 (02) :710-722
[4]   Unconditional uniqueness and non-uniqueness for Hardy-Hénon parabolic equations [J].
Chikami, Noboru ;
Ikeda, Masahiro ;
Taniguchi, Koichi ;
Tayachi, Slim .
MATHEMATISCHE ANNALEN, 2024, 390 (03) :3765-3825
[5]   Optimal well-posedness and forward self-similar solution for the Hardy-H?non parabolic equation in critical weighted Lebesgue spaces [J].
Chikami, Noboru ;
Ikeda, Masahiro ;
Taniguchi, Koichi .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2022, 222
[6]   Life span of solutions of a weakly coupled parabolic system [J].
Dickstein, Flavio ;
Loayza, Miguel .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2008, 59 (01) :1-23
[7]   A SEMILINEAR PARABOLIC-SYSTEM IN A BOUNDED DOMAIN [J].
ESCOBEDO, M ;
HERRERO, MA .
ANNALI DI MATEMATICA PURA ED APPLICATA, 1993, 165 :315-336
[8]   CRITICAL BLOWUP AND GLOBAL EXISTENCE NUMBERS FOR A WEAKLY COUPLED SYSTEM OF REACTION-DIFFUSION EQUATIONS [J].
ESCOBEDO, M ;
LEVINE, HA .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1995, 129 (01) :47-100
[9]   BOUNDEDNESS AND BLOW UP FOR A SEMILINEAR REACTION DIFFUSION SYSTEM [J].
ESCOBEDO, M ;
HERRERO, MA .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1991, 89 (01) :176-202
[10]  
Friedman A., 1987, J. Fac. Sci. Univ. Tokyo Sect. IA Math, V34, P65