Solutions of periodic boundary value problems for first-order linear fuzzy differential equations under new conditions

被引:1
作者
Sarvestani, M. Salehi [1 ]
Chehlabi, M. [1 ]
机构
[1] Islamic Azad Univ, Dept Math, Savadkooh Branch, Savadkooh, Iran
关键词
Generalized differentiability; Fuzzy periodic boundary value problem; Switching point; GENERALIZED HUKUHARA DIFFERENTIABILITY; CAUCHY-PROBLEM; UNIQUENESS; EXISTENCE; CALCULUS;
D O I
10.1007/s40314-024-02713-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, based on the generalized differentiability concept, first, some properties of continuity of the derivative function and the existence of switching points for a fuzzy-valued function are obtained. Next, the new sufficient conditions for existence of solutions to the periodic boundary problems for first-order linear fuzzy differential equations are presented, in detail. Finally, some examples are solved to illustrate the obtained results.
引用
收藏
页数:19
相关论文
共 33 条
[1]   Solving fuzzy differential equations based on the length function properties [J].
Allahviranloo, T. ;
Chehlabi, M. .
SOFT COMPUTING, 2015, 19 (02) :307-320
[2]   Generalizations of the differentiability of fuzzy-number-valued functions with applications to fuzzy differential equations [J].
Bede, B ;
Gal, SG .
FUZZY SETS AND SYSTEMS, 2005, 151 (03) :581-599
[3]   Almost periodic fuzzy-number-valued functions [J].
Bede, B ;
Gal, SG .
FUZZY SETS AND SYSTEMS, 2004, 147 (03) :385-403
[4]  
Bede B, 2013, STUD FUZZ SOFT COMP, V295, P1, DOI 10.1007/978-3-642-35221-8
[5]   First order linear fuzzy differential equations under generalized differentiability [J].
Bede, Barnabas ;
Rudas, Imre J. ;
Bencsik, Attila L. .
INFORMATION SCIENCES, 2007, 177 (07) :1648-1662
[6]   Generalized differentiability of fuzzy-valued functions [J].
Bede, Barnabas ;
Stefanini, Luciano .
FUZZY SETS AND SYSTEMS, 2013, 230 :119-141
[7]   Existence and uniqueness of non-periodic solutions to boundary value problems for discrete fractional difference equations with uncertainty [J].
Beigmohamadi, R. ;
Khastan, A. ;
Nieto, J. J. ;
Rodriguez-Lopez, R. .
INFORMATION SCIENCES, 2023, 634 :14-26
[8]  
Buckley JJ, 2000, FUZZY SET SYST, V110, P43, DOI 10.1016/S0165-0114(98)00141-9
[9]   On new solutions of fuzzy differential equations [J].
Chalco-Cano, Y. ;
Roman-Flores, H. .
CHAOS SOLITONS & FRACTALS, 2008, 38 (01) :112-119
[10]   New properties of the switching points for the generalized Hukuhara differentiability and some results on calculus ? [J].
Chalco-Cano, Y. ;
Costa, T. M. ;
Roman-Flores, H. ;
Rufian-Lizana, A. .
FUZZY SETS AND SYSTEMS, 2021, 404 :62-74