Elucidating the electron confinement effect on CeFeW/ZrO2 catalysts to enhance SO2 resistance in the low temperature NH3-SCR reaction

被引:5
|
作者
Wang, Yuhang [1 ,2 ,3 ]
Zhang, Guodong [1 ,2 ]
Xi, Yongjie [1 ,2 ]
Tang, Zhicheng [1 ,2 ]
Feng, Hua [3 ]
机构
[1] Chinese Acad Sci, State Key Lab Oxo Synth & Select Oxidat, Lanzhou 730000, Peoples R China
[2] Chinese Acad Sci, Lanzhou Inst Chem Phys, Natl Engn Res Ctr Fine Petrochem Intermediates, Lanzhou 730000, Peoples R China
[3] Northwest Normal Univ, Coll Chem & Chem Engn, Lanzhou 730070, Peoples R China
关键词
Ce-O-Fe structure; Electron confinement effect; Functional site; NH3-SCR; CERIA-BASED CATALYSTS; REDUCTION; NO; PERFORMANCE; NH3; OXIDATION; METHANOL; INSIGHT; SULFATE; OXIDES;
D O I
10.1016/j.seppur.2024.127569
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Currently, the inefficiency of the catalysts for NOx removal in the presence of SO2 in NH3-SCR reaction still prevalent. The problem of how to improve the SO2 tolerance at low temperature is still a common direction for researchers to work together. In this work, the CeFeW/ZrO2 catalyst prepared by a two-step hydrothermal method exhibited excellent SO2 resistance and SO2 had basically no impact on the CeFeW/ZrO2 catalyst activity. The superior catalytic performance and SO2 tolerance of CeFeW/ZrO2 catalyst mainly originated from that Ce acted as a functional site to form Ce-O-Fe, which altered the local electronic environment through electron confinement effect, increased the proportion of Fe3+/(Fe2+ + Fe3+) and surface chemisorption oxygen as well as the formation of oxygen vacancies on one hand. On the other hand, Fe sites exhibited excellent SO2 capacity and preferentially reacted with SO2, the metal sulfates Fe-2(SO4) (3) and FeSO4 restrained the formation and deposition of NH4HSO4 and (NH4)(2)SO4 on the catalyst surface. Simultaneously, the Ce-O-Fe-SO42- species ensured the electron transfer between Ce and Fe, and the redox properties of the catalyst were remained, thus the L-H mechanism on the CeFeW/ZrO2 catalyst could still be carried out smoothly under the conditions of the presence of SO2. Moreover, DFT calculation confirmed that the adsorption ability of NO, NH3 and O-2 was enhanced over CeFeW/ZrO2 catalyst, which resulted in an excellent SO2 tolerance.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Promotional effect of Ba additives on MnCeOx/TiO2 catalysts for NH3-SCR of NO at low temperature
    Pan, Youchun
    Shen, Yuesong
    Jin, Qijie
    Zhu, Shemin
    JOURNAL OF MATERIALS RESEARCH, 2018, 33 (16) : 2414 - 2422
  • [32] Elaborating the improving SO2 resistance mechanism of CeWTi catalysts through framework confined ordered mesoporous structures for low-temperature NH3-SCR reaction
    Li, Mengqian
    Huang, Xiaosheng
    Zhang, Guodong
    Tang, Zhicheng
    Hu, Dongcheng
    SEPARATION AND PURIFICATION TECHNOLOGY, 2023, 324
  • [33] Modification of CrCeOx with Mo: improved SO2 resistance and N2 selectivity for NH3-SCR at medium-low temperatures
    Yun, Junge
    Tong, Zhangfa
    Hu, Xiaomei
    Zhao, Cheng
    Liu, Chengxian
    Chen, Dingsheng
    Zhang, Hanbing
    Chen, Zhihang
    CATALYSIS SCIENCE & TECHNOLOGY, 2022, 12 (15) : 4789 - 4797
  • [34] Highly efficient NH3-SCR of NOx over MnFeW/Ti catalyst at low temperature: SO2 tolerance and reaction mechanism
    Liu, Lijun
    Su, Sheng
    Chen, Dezhi
    Shu, Tao
    Zheng, Xiaotao
    Yu, Jiuyang
    Feng, Yu
    Wang, Yi
    Hu, Song
    Xiang, Jun
    FUEL, 2022, 307
  • [35] Novel synthesis of reed flower-like SmMnOx catalyst with enhanced low-temperature activity and SO2 resistance for NH3-SCR
    Que, Tingting
    Duan, Kaijiao
    Koppala, Sivasankar
    Zhang, Yanfang
    He, Yungang
    Jia, Lijuan
    Liu, Tiancheng
    ENVIRONMENTAL RESEARCH, 2022, 215
  • [36] A review of Mn-based catalysts for low-temperature NH3-SCR: NOx removal and H2O/SO2 resistance
    Xu, Guiying
    Guo, Xiaolong
    Cheng, Xingxing
    Yu, Jian
    Fang, Baizeng
    NANOSCALE, 2021, 13 (15) : 7052 - 7080
  • [37] SO2 promotion in NH3-SCR reaction over V2O5/SiC catalyst at low temperature
    Bai, Shuli
    Wang, Zibo
    Li, Huanying
    Xu, Xu
    Liu, Minchao
    FUEL, 2017, 194 : 36 - 41
  • [38] The effect of dopants (Fe, Al) on the low-temperature activity and SO2 tolerance in solvothermally synthesized MnOx NH3-SCR catalysts
    Li, Huirong
    Schill, Leonhard
    Gao, Qi
    Mossin, Susanne
    Riisager, Anders
    FUEL, 2024, 358
  • [39] Mechanism for SO2 poisoning of Cu-CHA during low temperature NH3-SCR
    Bjerregaard, Joachim D.
    Votsmeier, Martin
    Groenbeck, Henrik
    JOURNAL OF CATALYSIS, 2023, 417 : 497 - 506
  • [40] CuTi LDH derived NH3-SCR catalysts with highly dispersed CuO active phase and improved SO2 resistance
    Nie, Yu
    Yan, Qinghua
    Chen, Sining
    O'Hare, Dermot
    Wang, Qiang
    CATALYSIS COMMUNICATIONS, 2017, 97 : 47 - 50