Development and external validation of a machine learning model for the prediction of persistent acute kidney injury stage 3 in multi-centric, multi-national intensive care cohorts

被引:2
作者
Zappala, Simone [1 ]
Alfieri, Francesca [1 ]
Ancona, Andrea [1 ]
Taccone, Fabio Silvio [2 ]
Maviglia, Riccardo [3 ]
Cauda, Valentina [1 ,4 ]
Finazzi, Stefano [5 ]
Dell'Anna, Antonio Maria [3 ]
机构
[1] U Care Med Srl, Corso Castelfidardo 30A, I-10129 Turin, Italy
[2] Univ Libre Bruxelles ULB, Hop Univ Bruxelles HUB, Dept Intens Care, Route Lennik 808, B-1070 Brussels, Belgium
[3] Fdn Policlin Univ Agostino Gemelli IRCCS, Dept Anesthesia Intens Care & Emergency Med, I-00168 Rome, Italy
[4] Politecn Torino, Dept Appl Sci & Technol, Cso Duca Abruzzi 24, I-10129 Turin, Italy
[5] Ist Ric Farmacol Mario Negri IRCCS, Clin Data Sci Lab, Via Stezzano 87, I-24126 Bergamo, BG, Italy
关键词
Artificial intelligence; Acute kidney injury; Biomarker; Intensive care unit;
D O I
10.1186/s13054-024-04954-8
中图分类号
R4 [临床医学];
学科分类号
1002 ; 100602 ;
摘要
Background The aim of this retrospective cohort study was to develop and validate on multiple international datasets a real-time machine learning model able to accurately predict persistent acute kidney injury (AKI) in the intensive care unit (ICU).Methods We selected adult patients admitted to ICU classified as AKI stage 2 or 3 as defined by the "Kidney Disease: Improving Global Outcomes" criteria. The primary endpoint was the ability to predict AKI stage 3 lasting for at least 72 h while in the ICU. An explainable tree regressor was trained and calibrated on two tertiary, urban, academic, single-center databases and externally validated on two multi-centers databases.Results A total of 7759 ICU patients were enrolled for analysis. The incidence of persistent stage 3 AKI varied from 11 to 6% in the development and internal validation cohorts, respectively and 19% in external validation cohorts. The model achieved area under the receiver operating characteristic curve of 0.94 (95% CI 0.92-0.95) in the US external validation cohort and 0.85 (95% CI 0.83-0.88) in the Italian external validation cohort.Conclusions A machine learning approach fed with the proper data pipeline can accurately predict onset of Persistent AKI Stage 3 during ICU patient stay in retrospective, multi-centric and international datasets. This model has the potential to improve management of AKI episodes in ICU if implemented in clinical practice.
引用
收藏
页数:10
相关论文
共 30 条
  • [1] Continuous and early prediction of future moderate and severe Acute Kidney Injury in critically ill patients: Development and multi-centric, multi-national external validation of a machine-learning model
    Alfieri, Francesca
    Ancona, Andrea
    Tripepi, Giovanni
    Rubeis, Andrea
    Arjoldi, Niccolo
    Finazzi, Stefano
    Cauda, Valentina
    Fagugli, Riccardo Maria
    [J]. PLOS ONE, 2023, 18 (07):
  • [2] DIAGNOSTIC-TESTS-2 - PREDICTIVE VALUES .4.
    ALTMAN, DG
    BLAND, JM
    [J]. BRITISH MEDICAL JOURNAL, 1994, 309 (6947) : 102 - 102
  • [3] Performance of urinary C-C motif chemokine ligand 14 for the prediction of persistent acute kidney injury: a systematic review and meta-analysis
    Chen, Yih-Ting
    Pan, Heng-Chih
    Hsu, Cheng-Kai
    Sun, Chiao-Yin
    Chen, Chun-Yu
    Chen, Yi-Hung
    Hsu, Heng-Jung
    Wu, I-Wen
    Wu, Vin-Cent
    Hoste, Eric
    [J]. CRITICAL CARE, 2023, 27 (01)
  • [4] Early Recognition of Persistent Acute Kidney Injury
    Darmon, Michael
    Truche, Anne-Sophie
    Abdel-Nabey, Moustapha
    Schnell, David
    Souweine, Bertrand
    [J]. SEMINARS IN NEPHROLOGY, 2019, 39 (05) : 431 - 441
  • [5] Foreword
    Eckardt, Kai-Uwe
    Kasiske, Bertram L.
    [J]. KIDNEY INTERNATIONAL SUPPLEMENTS, 2012, 2 (01) : 7 - 7
  • [6] Data collection and research with MargheritaTre
    Finazzi, Stefano
    Mandelli, Giulia
    Garbero, Elena
    Mondini, Matteo
    Trussardi, Giampietro
    Giardino, Michele
    Tavola, Mario
    Bertolini, Guido
    [J]. PHYSIOLOGICAL MEASUREMENT, 2018, 39 (08)
  • [7] Initiation Strategies for Renal-Replacement Therapy in the Intensive Care Unit
    Gaudry, Stephane
    Hajage, David
    Schortgen, Frederique
    Martin-Lefevre, Laurent
    Pons, Bertrand
    Boulet, Eric
    Boyer, Alexandre
    Chevrel, Guillaume
    Lerolle, Nicolas
    Carpentier, Dorothee
    de Prost, Nicolas
    Lautrette, Alexandre
    Bretagnol, Anne
    Mayaux, Julien
    Nseir, Saad
    Megarbane, Bruno
    Thirion, Marina
    Forel, Jean-Marie
    Maizel, Julien
    Yonis, Hodane
    Markowicz, Philippe
    Thiery, Guillaume
    Tubach, Florence
    Ricard, Jean-Damien
    Dreyfuss, Didier
    [J]. NEW ENGLAND JOURNAL OF MEDICINE, 2016, 375 (02) : 122 - 133
  • [8] Identification and validation of biomarkers of persistent acute kidney injury: the RUBY study
    Hoste, Eric
    Bihorac, Azra
    Al-Khafaji, Ali
    Ortega, Luis M.
    Ostermann, Marlies
    Haase, Michael
    Zacharowski, Kai
    Wunderink, Richard
    Heung, Michael
    Lissauer, Matthew
    Self, Wesley H.
    Koyner, Jay L.
    Honore, Patrick M.
    Prowle, John R.
    Joannidis, Michael
    Forni, Lui G.
    Kampf, J. Patrick
    McPherson, Paul
    Kellum, John A.
    Chawla, Lakhmir S.
    [J]. INTENSIVE CARE MEDICINE, 2020, 46 (05) : 943 - 953
  • [9] Epidemiology of acute kidney injury in critically ill patients: the multinational AKI-EPI study
    Hoste, Eric A. J.
    Bagshaw, Sean M.
    Bellomo, Rinaldo
    Cely, Cynthia M.
    Colman, Roos
    Cruz, Dinna N.
    Edipidis, Kyriakos
    Forni, Lui G.
    Gomersall, Charles D.
    Govil, Deepak
    Honore, Patrick M.
    Joannes-Boyau, Olivier
    Joannidis, Michael
    Korhonen, Anna-Maija
    Lavrentieva, Athina
    Mehta, Ravindra L.
    Palevsky, Paul
    Roessler, Eric
    Ronco, Claudio
    Uchino, Shigehiko
    Vazquez, Jorge A.
    Vidal Andrade, Erick
    Webb, Steve
    Kellum, John A.
    [J]. INTENSIVE CARE MEDICINE, 2015, 41 (08) : 1411 - 1423
  • [10] Temporal Changes in Incidence of Dialysis-Requiring AKI
    Hsu, Raymond K.
    McCulloch, Charles E.
    Dudley, R. Adams
    Lo, Lowell J.
    Hsu, Chi-yuan
    [J]. JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY, 2013, 24 (01): : 37 - 42