A finite-volume scheme for fractional diffusion on bounded domains

被引:1
作者
Bailo, Rafael [1 ]
Carrillo, Jose A. [1 ]
Fronzoni, Stefano [1 ]
Gomez-Castro, David [1 ,2 ]
机构
[1] Univ Oxford, Math Inst, Oxford, England
[2] Univ Autonoma Madrid, Dept Matemat, Ciudad Univ Cantoblanco, Madrid, Spain
基金
欧洲研究理事会;
关键词
Fractional Laplacian; Levy-Fokker-Planck equation; finite-volume schemes; NUMERICAL-METHODS; FULLY DISCRETE; EQUATION; LAPLACIAN; CONVERGENCE;
D O I
10.1017/S0956792524000172
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose a new fractional Laplacian for bounded domains, expressed as a conservation law and thus particularly suited to finite-volume schemes. Our approach permits the direct prescription of no-flux boundary conditions. We first show the well-posedness theory for the fractional heat equation. We also develop a numerical scheme, which correctly captures the action of the fractional Laplacian and its anomalous diffusion effect. We benchmark numerical solutions for the Levy-Fokker-Planck equation against known analytical solutions. We conclude by numerically exploring properties of these equations with respect to their stationary states and long-time asymptotics.
引用
收藏
页码:398 / 418
页数:21
相关论文
共 40 条
[1]   Singular boundary behaviour and large solutions for fractional elliptic equations [J].
Abatangelo, Nicola ;
Gomez-Castro, David ;
Luis Vazquez, Juan .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2023, 107 (02) :568-615
[2]   A FRACTIONAL LAPLACE EQUATION: REGULARITY OF SOLUTIONS AND FINITE ELEMENT APPROXIMATIONS [J].
Acosta, Gabriel ;
Pablo Borthagaray, Juan .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2017, 55 (02) :472-495
[3]  
Ainsworth M., 2018, Contemporary computational mathematics-a celebration of the 80th birthday of Ian Sloan, V1, P17, DOI DOI 10.1007/978-3-319-72456-0_2
[4]   Convergence of a fully discrete and energy-dissipating finite-volume scheme for aggregation-diffusion equations [J].
Bailo, Rafael ;
Carrillo, Jose A. ;
Murakawa, Hideki ;
Schmidtchen, Markus .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2020, 30 (13) :2487-2522
[5]  
Bailo R, 2020, COMMUN MATH SCI, V18, P1259
[6]   Improved intermediate asymptotics for the heat equation [J].
Bartier, Jean-Philippe ;
Blanchet, Adrien ;
Dolbeault, Jean ;
Escobedo, Miguel .
APPLIED MATHEMATICS LETTERS, 2011, 24 (01) :76-81
[7]  
Biler Piotr., 2003, Banach Center Publ., V60, P307, DOI DOI 10.4064/BC60-0-24
[8]  
Blumenthal R.M., 1960, T AM MATH SOC, V95, P263, DOI [10.2307/1993291, 10.1090/S0002-9947-1960-0119247-6]
[9]   Numerical methods for fractional diffusion [J].
Bonito, Andrea ;
Borthagaray, Juan Pablo ;
Nochetto, Ricardo H. ;
Otarola, Enrique ;
Salgado, Abner J. .
COMPUTING AND VISUALIZATION IN SCIENCE, 2018, 19 (5-6) :19-46
[10]   The one-dimensional Keller-Segel model with fractional diffusion of cells [J].
Bournaveas, Nikolaos ;
Calvez, Vincent .
NONLINEARITY, 2010, 23 (04) :923-935