A NOVEL REMOTE SENSING IMAGE REGISTRATION ALGORITHM BASED ON THE ADAPTIVE PCNN SEGMENTATION

被引:0
作者
Ge, J. F. [1 ,2 ]
Zhang, Y. S. [1 ]
Li, X. J. [1 ,2 ,3 ]
Li, H. [1 ]
Li, Y. K. [1 ,2 ,3 ]
机构
[1] Lanzhou Jiaotong Univ, Fac Geomat, Lanzhou, Peoples R China
[2] Natl Local Joint Engn Res Ctr Technol & Applicat, Lanzhou, Peoples R China
[3] Gansu Prov Engn Lab Natl Geog State Monitoring, Lanzhou, Peoples R China
来源
URBAN GEOINFORMATICS 2022 | 2022年
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Image Registration; Slime Mould Algorithm; PCNN; Remote Sensing Image; Segmentation; Feature Detection; SCALE;
D O I
10.5194/isprs-annals-X-3-W2-2022-17-2022
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The appropriate feature segmentation can further improve the remote sensing image registration. The paper proposes a novel adaptive region-based registration method for remote sensing image, which combines the PCNN segmentation and feature-based method. Specifically, the parameters of PCNN are adaptively optimized by the slime mould algorithm. The reference and the input image are matched by the similar regions of PCNN segmentation, which is insensitive to the geometric and photometric changes. Then, two images are registered by the regional matching. Since the segmentation regions of the PCNN agree with the human visual system, and more stable. The proposed method achieves better registration performance. Experimental results conducted on UAV and GaoFen-2 remote sensing image pairs indicate that the proposed method outperforms the SIFT, SURF, Harris-Laplace, MSER methods.
引用
收藏
页码:17 / 22
页数:6
相关论文
共 15 条
[1]  
Ali F., 2016, Int. J. Comput. Eng. Inf. Technol., V8, P100
[2]   SURF: Speeded up robust features [J].
Bay, Herbert ;
Tuytelaars, Tinne ;
Van Gool, Luc .
COMPUTER VISION - ECCV 2006 , PT 1, PROCEEDINGS, 2006, 3951 :404-417
[3]   SAR Image Registration Using Multiscale Image Patch Features With Sparse Representation [J].
Fan, Jianwei ;
Wu, Yan ;
Li, Ming ;
Liang, Wenkai ;
Zhang, Qiang .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2017, 10 (04) :1483-1493
[4]   PCNN models and applications [J].
Johnson, JL ;
Padgett, ML .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 1999, 10 (03) :480-498
[5]   An Overview of Image Segmentation Based on Pulse-Coupled Neural Network [J].
Lian, Jing ;
Yang, Zhen ;
Liu, Jizhao ;
Sun, Wenhao ;
Zheng, Li ;
Du, Xiaogang ;
Yi, Zetong ;
Shi, Bin ;
Ma, Yide .
ARCHIVES OF COMPUTATIONAL METHODS IN ENGINEERING, 2021, 28 (02) :387-403
[6]   Distinctive image features from scale-invariant keypoints [J].
Lowe, DG .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 2004, 60 (02) :91-110
[7]   Remote Sensing Image Registration With Modified SIFT and Enhanced Feature Matching [J].
Ma, Wenping ;
Wen, Zelian ;
Wu, Yue ;
Jiao, Licheng ;
Gong, Maoguo ;
Zheng, Yafei ;
Liu, Liang .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2017, 14 (01) :3-7
[8]   Correlation-Coefficient-Based Fast Template Matching Through Partial Elimination [J].
Mahmood, Arif ;
Khan, Sohaib .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2012, 21 (04) :2099-2108
[9]   Scale & affine invariant interest point detectors [J].
Mikolajczyk, K ;
Schmid, C .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 2004, 60 (01) :63-86
[10]   Region-based image registration for remote sensing imagery [J].
Okorie, Azubuike ;
Makrogiannis, Sokratis .
COMPUTER VISION AND IMAGE UNDERSTANDING, 2019, 189