Genome-Wide Identification, Characterization, and Expression Analysis of the HD-Zip Gene Family in Lagerstroemia for Regulating Plant Height

被引:1
|
作者
Lin, Hang [1 ]
Jiang, Xinqiang [1 ]
Qian, Cheng [1 ]
Zhang, Yue [1 ]
Meng, Xin [1 ]
Liu, Nairui [1 ]
Li, Lulu [1 ]
Wang, Jingcai [2 ]
Ju, Yiqian [1 ]
机构
[1] Qingdao Agr Univ, Coll Landscape Architecture & Forestry, Qingdao 266109, Peoples R China
[2] East China Acad Inventory & Planning NFGA, Hangzhou 310019, Peoples R China
基金
中国国家自然科学基金;
关键词
gene expression; HD-Zip gene family; Lagerstroemia indica; plant height; II TRANSCRIPTION FACTORS; HOMEODOMAIN; ARABIDOPSIS; PROTEINS; LEAF;
D O I
10.3390/genes15040428
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
The Homeodomain leucine zipper (HD-Zip) family of transcription factors is crucial in helping plants adapt to environmental changes and promoting their growth and development. Despite research on the HD-Zip family in various plants, studies in Lagerstroemia (crape myrtle) have not been reported. This study aimed to address this gap by comprehensively analyzing the HD-Zip gene family in crape myrtle. This study identified 52 HD-Zip genes in the genome of Lagerstroemia indica, designated as LinHDZ1-LinHDZ52. These genes were distributed across 22 chromosomes and grouped into 4 clusters (HD-Zip I-IV) based on their phylogenetic relationships. Most gene structures and motifs within each cluster were conserved. Analysis of protein properties, gene structure, conserved motifs, and cis-acting regulatory elements revealed diverse roles of LinHDZs in various biological contexts. Examining the expression patterns of these 52 genes in 6 tissues (shoot apical meristem, tender shoot, and mature shoot) of non-dwarf and dwarf crape myrtles revealed that 2 LinHDZs (LinHDZ24 and LinHDZ14) and 2 LinHDZs (LinHDZ9 and LinHDZ35) were respectively upregulated in tender shoot of non-dwarf crape myrtles and tender and mature shoots of dwarf crape myrtles, which suggested the important roles of these genes in regulate the shoot development of Lagerstroemia. In addition, the expression levels of 2 LinHDZs (LinHDZ23 and LinHDZ34) were significantly upregulated in the shoot apical meristem of non-dwarf crape myrtle. These genes were identified as key candidates for regulating Lagerstroemia plant height. This study enhanced the understanding of the functions of HD-Zip family members in the growth and development processes of woody plants and provided a theoretical basis for further studies on the molecular mechanisms underlying Lagerstroemia plant height.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Genome-wide identification and systematic analysis of the HD-Zip gene family and its roles in response to pH in Panax ginseng Meyer
    Li Li
    Boxin Lv
    Kaiyou Zang
    Yue Jiang
    Chaofan Wang
    Yanfang Wang
    Kangyu Wang
    Mingzhu Zhao
    Ping Chen
    Jun Lei
    Yi Wang
    Meiping Zhang
    BMC Plant Biology, 23
  • [32] Genome-Wide Identification, Classification, and Expression Analysis of the HD-Zip Transcription Factor Family in Apple (Malus domestica Borkh.)
    Liu, Kai
    Han, Xiaolei
    Liang, Zhaolin
    Yan, Jiadi
    Cong, Peihua
    Zhang, Caixia
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (05)
  • [33] Genome-wide identification, classification and analysis of HD-ZIP gene family in citrus, and its potential roles in somatic embryogenesis regulation
    Ge, Xiao-Xia
    Liu, Zheng
    Wu, Xiao-Meng
    Chai, Li-Jun
    Guo, Wen-Wu
    GENE, 2015, 574 (01) : 61 - 68
  • [34] Genome-wide identification and systematic analysis of the HD-Zip gene family and its roles in response to pH in Panax ginseng Meyer
    Li, Li
    Lv, Boxin
    Zang, Kaiyou
    Jiang, Yue
    Wang, Chaofan
    Wang, Yanfang
    Wang, Kangyu
    Zhao, Mingzhu
    Chen, Ping
    Lei, Jun
    Wang, Yi
    Zhang, Meiping
    BMC PLANT BIOLOGY, 2023, 23 (01)
  • [35] Genome-wide identification and expression analysis of the ZIP gene family in Quercus dentata
    Zhang, Zhen
    Wang, Meijia
    Zhang, Xuejiao
    Wang, Wenbo
    He, Xiangfeng
    Wang, Rui
    Wang, Cong
    Leng, Pingsheng
    Mladenov, Petko
    Wang, Wenhe
    Hu, Zenghui
    CURRENT PLANT BIOLOGY, 2023, 35
  • [36] Genome-wide characterization and expression profiling of the relation of the HD-Zip gene family to abiotic stress in barley (Hordeum vulgare L.)
    Li, Yuan
    Xiong, Huiyan
    Cuo, Duojie
    Wu, Xiongxiong
    Duan, Ruijun
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2019, 141 : 250 - 258
  • [37] Genome-wide analysis of the homeodomain-leucine zipper (HD-ZIP) gene family in peach (Prunus persica)
    Zhang, C. H.
    Ma, R. J.
    Shen, Z. J.
    Sun, X.
    Korir, N. K.
    Yu, M. L.
    GENETICS AND MOLECULAR RESEARCH, 2014, 13 (02): : 2654 - 2668
  • [38] Genome-Wide Identification and Expression Analysis of Homeodomain Leucine Zipper Subfamily IV (HD-ZIP IV) Gene Family in Cannabis sativa L.
    Ma, Gang
    Zelman, Alice Kira
    Apicella, Peter, V
    Berkowitz, Gerald
    PLANTS-BASEL, 2022, 11 (10):
  • [39] Genome-Wide Identification of Homeodomain Leucine Zipper (HD-ZIP) Transcription Factor, Expression Analysis, and Protein Interaction of HD-ZIP IV in Oil Palm Somatic Embryogenesis
    Khianchaikhan, Kamolwan
    Aroonluk, Suvichark
    Vuttipongchaikij, Supachai
    Jantasuriyarat, Chatchawan
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (05)
  • [40] Genome-wide analysis of HD-Zip genes in grape (Vitis vinifera)
    Jiang, Haiyang
    Jin, Jing
    Liu, Huan
    Dong, Qing
    Yan, Hanwei
    Gan, Defang
    Zhang, Wei
    Zhu, Suwen
    TREE GENETICS & GENOMES, 2015, 11 (01)