Trusted Task Offloading in Vehicular Edge Computing Networks: A Reinforcement Learning Based Solution

被引:0
|
作者
Zhang, Lushi [1 ]
Guo, Hongzhi [1 ]
Zhou, Xiaoyi [1 ]
Liu, Jiajia [1 ]
机构
[1] Northwestern Polytech Univ, Sch Cybersecur, Xian 710072, Shaanxi, Peoples R China
来源
IEEE CONFERENCE ON GLOBAL COMMUNICATIONS, GLOBECOM | 2023年
关键词
mobile edge computing; vehicular networks; trust evaluation; recommend trust; reinforcement learning; CHALLENGES; FRAMEWORK;
D O I
10.1109/GLOBECOM54140.2023.10437191
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Mobile edge computing (MEC) has emerged as a promising approach to address the time-sensitive requirements of mobile Internet of Vehicles (IoVs) systems. Unfortunately, the current deployment density of roadside units (RSUs) is relatively sparse, and the direct V2I communication coverage is limited, making it impossible to meet the communication and computing requirements of all vehicles. There is an urgent need for V2V communication to assist V2I communication, which can achieve a wider coverage of RSUs, a diversified selection of task processing locations, and even load balancing between RSUs. However, V2V communication also faces a series of challenges. On the one hand, due to the sparsity, time-varying, and high-speed mobility of vehicle nodes in IoVs, the selection of collaborative communication paths becomes more difficult. On the other hand, there are inevitably malicious vehicles in IoVs, and how to achieve efficient task processing while ensuring privacy and driving safety is also a problem worth studying. Existing research generally optimized the delay of direct V2I task offloading, ignoring the necessity of V2V-assisted communication and the presence of malicious communication nodes. To address the above challenges, we present a vehicular edge computing network structure with multiple communication modes, including V2V, V2I, etc, and use a recommended trust model to analyze the trust degree between the nodes in IoVs. Then, we discuss the issue of trusted task offloading for IoVs and propose a Deep Deterministic Policy Gradient (DDPG) scheme. The numerical results indicate that our proposed strategy outperforms current methods in terms of task offload latency and credibility.
引用
收藏
页码:6711 / 6716
页数:6
相关论文
共 50 条
  • [41] A Survey on Task Offloading Research in Vehicular Edge Computing
    Li Z.-Y.
    Wang Q.
    Chen Y.-F.
    Xie G.-Q.
    Li R.-F.
    Jisuanji Xuebao/Chinese Journal of Computers, 2021, 44 (05): : 963 - 982
  • [42] Multi-dimensional Task Offloading using Deep Learning for Vehicular Edge Computing Networks: A Survey
    Abuthahir S.S.
    Peter J.S.P.
    IEIE Transactions on Smart Processing and Computing, 2024, 13 (01) : 1 - 11
  • [43] Mobile edge computing task distribution and offloading algorithm based on deep reinforcement learning in internet of vehicles
    Wang, Jianxi
    Wang, Liutao
    JOURNAL OF AMBIENT INTELLIGENCE AND HUMANIZED COMPUTING, 2021,
  • [44] Offline Reinforcement Learning for Asynchronous Task Offloading in Mobile Edge Computing
    Zhang, Bolei
    Xiao, Fu
    Wu, Lifa
    IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 2024, 21 (01): : 939 - 952
  • [45] Deep Reinforcement Learning for Collaborative Edge Computing in Vehicular Networks
    Li, Mushu
    Gao, Jie
    Zhao, Lian
    Shen, Xuemin
    IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING, 2020, 6 (04) : 1122 - 1135
  • [46] Reservation Service: Trusted Relay Selection for Edge Computing Services in Vehicular Networks
    Hui, Yilong
    Su, Zhou
    Luan, Tom H.
    Li, Changle
    IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2020, 38 (12) : 2734 - 2746
  • [47] Computation Offloading for Mobile Edge Computing Enabled Vehicular Networks
    Wang, Jun
    Feng, Daquan
    Zhang, Shengli
    Tang, Jianhua
    Quek, Tony Q. S.
    IEEE ACCESS, 2019, 7 : 62624 - 62632
  • [48] Joint optimization of network selection and task offloading for vehicular edge computing
    Tang, Lujie
    Tang, Bing
    Zhang, Li
    Guo, Feiyan
    He, Haiwu
    JOURNAL OF CLOUD COMPUTING-ADVANCES SYSTEMS AND APPLICATIONS, 2021, 10 (01):
  • [49] Joint optimization of network selection and task offloading for vehicular edge computing
    Lujie Tang
    Bing Tang
    Li Zhang
    Feiyan Guo
    Haiwu He
    Journal of Cloud Computing, 10
  • [50] Deep Reinforcement Learning Method for Task Offloading in Mobile Edge Computing Networks Based on Parallel Exploration with Asynchronous Training
    Chen, Junyan
    Jin, Lei
    Yao, Rui
    Zhang, Hongmei
    MOBILE NETWORKS & APPLICATIONS, 2024,