Metabolomics in Preclinical Drug Safety Assessment: Current Status and Future Trends

被引:13
作者
Sille, Fenna [1 ,2 ]
Hartung, Thomas [1 ,2 ,3 ]
机构
[1] Johns Hopkins Univ, Ctr Alternat Anim Testing CAAT, Johns Hopkins Bloomberg Sch Publ Hlth, Dept Environm Hlth Sci, Baltimore, MD 21205 USA
[2] Johns Hopkins Univ, Whiting Sch Engn, Baltimore, MD 21205 USA
[3] Univ Konstanz, CAAT Europe, Univ str 10, D-78464 Constance, Germany
关键词
metabolomics; toxicity; safety; drug development; adverse outcome pathways; ADVERSE OUTCOME PATHWAYS; CIGARETTE-SMOKE; IN-VITRO; TOXICOLOGY; TOXICITY; EXPOSOME; BIOMARKERS; FOOD; ACETAMINOPHEN; 21ST-CENTURY;
D O I
10.3390/metabo14020098
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Metabolomics is emerging as a powerful systems biology approach for improving preclinical drug safety assessment. This review discusses current applications and future trends of metabolomics in toxicology and drug development. Metabolomics can elucidate adverse outcome pathways by detecting endogenous biochemical alterations underlying toxicity mechanisms. Furthermore, metabolomics enables better characterization of human environmental exposures and their influence on disease pathogenesis. Metabolomics approaches are being increasingly incorporated into toxicology studies and safety pharmacology evaluations to gain mechanistic insights and identify early biomarkers of toxicity. However, realizing the full potential of metabolomics in regulatory decision making requires a robust demonstration of reliability through quality assurance practices, reference materials, and interlaboratory studies. Overall, metabolomics shows great promise in strengthening the mechanistic understanding of toxicity, enhancing routine safety screening, and transforming exposure and risk assessment paradigms. Integration of metabolomics with computational, in vitro, and personalized medicine innovations will shape future applications in predictive toxicology.
引用
收藏
页数:16
相关论文
共 98 条
[1]   Deep Learning Applications for Predicting Pharmacological Properties of Drugs and Drug Repurposing Using Transcriptomic Data [J].
Aliper, Alexander ;
Plis, Sergey ;
Artemov, Artem ;
Ulloa, Alvaro ;
Mamoshina, Polina ;
Zhavoronkov, Alex .
MOLECULAR PHARMACEUTICS, 2016, 13 (07) :2524-2530
[2]   Comparison of extraction methods for intracellular metabolomics of human tissues [J].
Andresen, Carolin ;
Boch, Tobias ;
Gegner, Hagen M. ;
Mechtel, Nils ;
Narr, Andreas ;
Birgin, Emrullah ;
Rasbach, Erik ;
Rahbari, Nuh ;
Trumpp, Andreas ;
Poschet, Gernot ;
Huebschmann, Daniel .
FRONTIERS IN MOLECULAR BIOSCIENCES, 2022, 9
[3]   ADVERSE OUTCOME PATHWAYS: A CONCEPTUAL FRAMEWORK TO SUPPORT ECOTOXICOLOGY RESEARCH AND RISK ASSESSMENT [J].
Ankley, Gerald T. ;
Bennett, Richard S. ;
Erickson, Russell J. ;
Hoff, Dale J. ;
Hornung, Michael W. ;
Johnson, Rodney D. ;
Mount, David R. ;
Nichols, John W. ;
Russom, Christine L. ;
Schmieder, Patricia K. ;
Serrrano, Jose A. ;
Tietge, Joseph E. ;
Villeneuve, Daniel L. .
ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY, 2010, 29 (03) :730-741
[4]  
[Anonymous], About Us
[5]  
[Anonymous], 2023, FUT DIR WORKSH ADV N
[6]  
[Anonymous], about us
[7]   Toxicometabolomics: Small Molecules to Answer Big Toxicological Questions [J].
Araujo, Ana Margarida ;
Carvalho, Felix ;
Guedes de Pinho, Paula ;
Carvalho, Marcia .
METABOLITES, 2021, 11 (10)
[8]   Toward Good Read-Across Practice (GRAP) Guidance [J].
Ball, Nicholas ;
Cronin, Mark T. D. ;
Shen, Jie ;
Blackburn, Karen ;
Booth, Ewan D. ;
Bouhifd, Mounir ;
Donley, Elizabeth ;
Egnash, Laura ;
Hastings, Charles ;
Juberg, Daland R. ;
Kleensang, Andre ;
Kleinstreuer, Nicole ;
Kroese, E. Dinant ;
Lee, Adam C. ;
Luechtefeld, Thomas ;
Maertens, Alexandra ;
Marty, Sue ;
Naciff, Jorge M. ;
Palmer, Jessica ;
Pamies, David ;
Penman, Mike ;
Richarz, Andrea-Nicole ;
Russo, Daniel P. ;
Stuard, Sharon B. ;
Patlewicz, Grace ;
van Ravenzwaay, Bennard ;
Wu, Shengde ;
Zhu, Hao ;
Hartung, Thomas .
ALTEX-ALTERNATIVES TO ANIMAL EXPERIMENTATION, 2016, 33 (02) :149-166
[9]   The Combination of a Human Biomimetic Liver Microphysiology System with BIOLOGXsym, a Quantitative Systems Toxicology (QST) Modeling Platform for Macromolecules, Provides Mechanistic Understanding of Tocilizumab- and GGF2-Induced Liver Injury [J].
Beaudoin, James J. ;
Clemens, Lara ;
Miedel, Mark T. ;
Gough, Albert ;
Zaidi, Fatima ;
Ramamoorthy, Priya ;
Wong, Kari E. ;
Sarangarajan, Rangaprasad ;
Battista, Christina ;
Shoda, Lisl K. M. ;
Siler, Scott Q. ;
Taylor, D. Lansing ;
Howell, Brett A. ;
Vernetti, Lawrence A. ;
Yang, Kyunghee .
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (11)
[10]   Towards quality assurance and quality control in untargeted metabolomics studies [J].
Beger, Richard D. ;
Dunn, Warwick B. ;
Bandukwala, Abbas ;
Bethan, Bianca ;
Broadhurst, David ;
Clish, Clary B. ;
Dasari, Surendra ;
Derr, Leslie ;
Evans, Annie ;
Fischer, Steve ;
Flynn, Thomas ;
Hartung, Thomas ;
Herrington, David ;
Higashi, Richard ;
Hsu, Ping-Ching ;
Jones, Christina ;
Kachman, Maureen ;
Karuso, Helen ;
Kruppa, Gary ;
Lippa, Katrice ;
Maruvada, Padma ;
Mosley, Jonathan ;
Ntai, Ioanna ;
O'Donovan, Claire ;
Playdon, Mary ;
Raftery, Daniel ;
Shaughnessy, Daniel ;
Souza, Amanda ;
Spaeder, Timothy ;
Spalholz, Barbara ;
Tayyari, Fariba ;
Ubhi, Baljit ;
Verma, Mukesh ;
Walk, Tilman ;
Wilson, Ian ;
Witkin, Keren ;
Bearden, Daniel W. ;
Zanetti, Krista A. .
METABOLOMICS, 2019, 15 (01)