共 11 条
- [1] Pan H., Gao F., Dong J., Du Q., Multiscale adaptive fusion network for hyperspectral image denoising, IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., 16, pp. 3045-3059, (2023)
- [2] Chen X., Zhang X., Ren M., Zhou B., Feng Z., Cheng J., An improved hyperspectral unmixing approach based on a spatial–spectral adaptive nonlinear unmixing network, IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., 16, pp. 9680-9696, (2023)
- [3] Jin D., Yang B., Graph attention convolutional autoencoder-based unsupervised nonlinear unmixing for hyperspectral images, IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., 16, pp. 7896-7906, (2023)
- [4] Qu K., Li Z., A fast sparse NMF optimization algorithm for hyperspectral unmixing, IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., 17, pp. 1885-1902, (2024)
- [5] Fang Y., Cai Y., Fan L., SDRCNN: A single-scale dense residual connected convolutional neural network for pansharpening, IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., 16, pp. 6325-6338, (2023)
- [6] Pang S., Shi Y., Hu H., Ye L., Chen J., PTRSegNet: A patch-to-region bottom–up pyramid framework for the semantic segmentation of large-format remote sensing images, IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., 17, pp. 3664-3673, (2024)
- [7] Hamza A., Et al., An integrated parallel inner deep learning models information fusion with bayesian optimization for land scene classification in satellite images, IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., 16, pp. 9888-9903, (2023)
- [8] Singh A.K., Sunkara R., Kadambi G.R., Palade V., Spectral–spatial classification with naive bayes and adaptive FFT for improved classification accuracy of hyperspectral images, IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., 17, pp. 1100-1113, (2024)
- [9] Chhapariya K., Buddhiraju K.M., Kumar A., A deep spectral–spatial residual attention network for hyperspectral image classification, IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens.
- [10] Hong Z., Et al., Near real-time monitoring of fire spots using a novel SBT-FireNet based on Himawari-8 satellite images, IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., 17, pp. 1719-1733, (2024)