Low-complexity and low-latency equalization technique - probabilistic noise cancellation

被引:4
作者
Stojanovic, Nebojsa [1 ]
Lin, Youxi [1 ]
Rahman, Talha [1 ]
Calabro, Stefano [1 ]
Hossain, Md Sabbir-Bin [2 ]
Wettlin, Tom Jonas [1 ]
Kuschnerov, Maxim [1 ]
机构
[1] Huawei Technol Duesseldorf GmbH, Munich Res Ctr, Riesstr 25, D-80992 Munich, Germany
[2] Rode & Schwarz, Muhldorfstr 15, D-81671 Munich, Germany
关键词
COHERENT DETECTION; ALGORITHMS; DESIGN; DSP;
D O I
10.1364/OE.514239
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Both inside data centers (DCs) and in short optical links between data centers (DC campuses), intensity -modulation and direct -detection (IMDD) systems using four -level pulse amplitude modulation (PAM4) will dominate this decade due to low transceiver price and power consumption. The next DC transceiver generation based on 100 Gbaud PAM4 will require advanced digital signal processing (DSP) algorithms and more powerful forward error correction (FEC) codes. Because of bandwidth limitations, the conventional DC DSP based on a few -tap linear feed -forward equalizer (FFE) is likely to be upgraded to more complex but still low -complexity Volterra equalizers followed by a noise whitening filter and either a maximum likelihood sequence estimation (MLSE) or a maximum a posteriori probability (MAP) algorithm. However, stringent power consumption and latency requirements may limit the use of complex algorithms such as decision feedback equalizer (DFE) or MLSE/MAP in DC networks (DCN). In this paper, we introduce a low -complexity, low -latency algorithm based on a feedforward structure, yielding a performance between DFE and MLSE. We call the novel equalization algorithm probabilistic noise cancellation (PNC), since it weights noise patterns based on their probabilities in the presence of bandwidth limitations. The probabilistic weighting is efficiently exploited in correcting correlated errors caused by noise coloring in the FFE.
引用
收藏
页码:6945 / 6962
页数:18
相关论文
共 31 条
[1]  
[Anonymous], About us
[2]  
[Anonymous], About us
[3]  
Austin M. E, 1967, Technical Report No. 461
[4]  
Benvenuto N., 2002, ALGORITHMS COMMUNICA
[5]   A 28-Gb/s 4-Tap FFE/15-Tap DFE Serial Link Transceiver in 32-nm SOI CMOS Technology [J].
Bulzacchelli, John F. ;
Menolfi, Christian ;
Beukema, Troy J. ;
Storaska, Daniel W. ;
Hertle, Juergen ;
Hanson, David R. ;
Hsieh, Ping-Hsuan ;
Rylov, Sergey V. ;
Furrer, Daniel ;
Gardellini, Daniele ;
Prati, Andrea ;
Morf, Thomas ;
Sharma, Vivek ;
Kelkar, Ram ;
Ainspan, Herschel A. ;
Kelly, William R. ;
Chieco, Leonard R. ;
Ritter, Glenn A. ;
Sorice, John A. ;
Garlett, Jon D. ;
Callan, Robert ;
Braendli, Matthias ;
Buchmann, Peter ;
Kossel, Marcel ;
Toifl, Thomas ;
Friedman, Daniel J. .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2012, 47 (12) :3232-3248
[6]   HIGH-SPEED PARALLEL VITERBI DECODING - ALGORITHM AND VLSI-ARCHITECTURE [J].
FETTWEIS, G ;
MEYR, H .
IEEE COMMUNICATIONS MAGAZINE, 1991, 29 (05) :46-55
[7]   Coherent equalization and POLMUX-RZ-DQPSK for robust 100-GE transmission [J].
Fludger, Chris R. S. ;
Duthel, Thomas ;
Van den Borne, Dirk ;
Schulien, Christoph ;
Schmidt, Ernst-Dieter ;
Wuth, Torsten ;
Geyer, Jonas ;
De Man, Erik ;
Khoe, Giok-Djan ;
de Waardt, Huug .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 2008, 26 (1-4) :64-72
[9]  
ieee802, ABOUT US
[10]   Coherent detection in optical fiber systems [J].
Ip, Ezra ;
Lau, Alan Pak Tao ;
Barros, Daniel J. F. ;
Kahn, Joseph M. .
OPTICS EXPRESS, 2008, 16 (02) :753-791