Preventing Thermal Runaway Propagation in Lithium-ion Batteries using a Passive Liquid Housing

被引:3
作者
Lee, Seungmin [1 ]
Kwon, Minseo [1 ]
Kim, Youngsik [1 ]
机构
[1] Ulsan Natl Inst Sci & Technol, Sch Energy & Chem Engn, Ulsan 44919, South Korea
关键词
cylindrical lithium-ion battery module; liquid housing; water cooling; thermal runaway propagation; fire prevention; thermal management; battery simulation; PERFORMANCE;
D O I
10.1149/1945-7111/ad2d3f
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Lithium-ion batteries (LIBs), due to their high energy density, long lifespan, and low self-discharge, are widely used in various applications. However, they are challenged by the risk of thermal runaway and thermal degradation, so they require effective thermal management system. In this study, we investigated the application of a water-inclusive housing structure to battery modules to prevent thermal runaway propagation and enhance thermal management. The thermal and electrochemical behaviors of the batteries were analyzed using the ANSYS Fluent simulator. Through simulations, we determined the optimal cell spacing of the water-housing module that maximizes energy density while ensuring thermal stability. Our results indicate that a water housing module composed of 20 cylindrical cells(10s2p) with a cell spacing of 4 mm can effectively prevent thermal runaway propagation and reduce cell temperature by approximately 60% during normal discharge, while maintaining 80% of the volumetric energy density of a conventional module. Furthermore, the reliability of our simulation results was validated through thermal runaway and normal discharge tests. The proposed water housing method holds great promise in preventing thermal runaway propagation and enhancing thermal stability of LIB modules, thereby mitigating the risk of fire and thermal degradation during normal discharge.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Review on Thermal Runaway of Lithium-Ion Batteries for Electric Vehicles
    Liubin Song
    Youhang Zheng
    Zhongliang Xiao
    Cheng Wang
    Tianyuan Long
    Journal of Electronic Materials, 2022, 51 : 30 - 46
  • [22] Thermal Runaway Propagation Characteristics of Lithium-Ion Batteries with Different Cathode Materials: A Comparative Study
    Li, Yitong
    Wang, Huaibin
    Wang, Shilin
    Xu, Lejun
    Li, Yang
    Sun, Junli
    Gao, Yang
    FIRE TECHNOLOGY, 2025,
  • [23] An experimental analysis on thermal runaway and its propagation in Cell-to-Pack lithium-ion batteries
    Wang, Huaibin
    Xu, Hui
    Zhao, Zhenyang
    Wang, Qinzheng
    Jin, Changyong
    Li, Yanliang
    Sheng, Jun
    Li, Kuijie
    Du, Zhiming
    Xu, Chengshan
    Feng, Xuning
    APPLIED THERMAL ENGINEERING, 2022, 211
  • [24] Modeling thermal runaway propagation of lithium-ion batteries under impacts of ceiling jet fire
    Wang, Gongquan
    Ping, Ping
    Zhang, Yue
    Zhao, Hengle
    Lv, Hongpeng
    Gao, Xinzeng
    Gao, Wei
    Kong, Depeng
    PROCESS SAFETY AND ENVIRONMENTAL PROTECTION, 2023, 175 : 524 - 540
  • [25] Study on the Blocking Effect of Aerogel Felt Thickness on Thermal Runaway Propagation of Lithium-Ion Batteries
    Quanyi Liu
    Qian Zhu
    Wentian Zhu
    Xiaoying Yi
    Fire Technology, 2023, 59 : 381 - 399
  • [26] Characteristics and mechanisms of as well as evaluation methods and countermeasures for thermal runaway propagation in lithium-ion batteries
    Ouyang, Dongxu
    Chung, Yi-Hong
    Liu, Jialong
    Bai, Jinlong
    Zhou, Yuxin
    Chen, Shichen
    Wang, Zhirong
    Shu, Chi-Min
    PROGRESS IN ENERGY AND COMBUSTION SCIENCE, 2025, 108
  • [27] Study on the Blocking Effect of Aerogel Felt Thickness on Thermal Runaway Propagation of Lithium-Ion Batteries
    Liu, Quanyi
    Zhu, Qian
    Zhu, Wentian
    Yi, Xiaoying
    FIRE TECHNOLOGY, 2023, 59 (02) : 381 - 399
  • [28] Characteristics of and factors influencing thermal runaway propagation in lithium-ion battery packs
    Wang, Zhirong
    He, Tengfei
    Bian, Huan
    Jiang, Fengwei
    Yang, Yun
    JOURNAL OF ENERGY STORAGE, 2021, 41
  • [29] Inhibition effect of liquid nitrogen on thermal runaway propagation of lithium ion batteries in confined space
    Wang, Zhirong
    Wang, Kuo
    Wang, Junling
    Yang, Yun
    Zhu, Yu
    Bai, Wei
    JOURNAL OF LOSS PREVENTION IN THE PROCESS INDUSTRIES, 2022, 79
  • [30] On a method to mitigate thermal runaway and propagation in packages of lithium ion batteries
    Quintiere, J. G.
    FIRE SAFETY JOURNAL, 2022, 130