Metric Mean Dimension and Mean Hausdorff Dimension Varying the Metric

被引:1
|
作者
Muentes, J. [1 ]
Becker, A. J. [2 ]
Baraviera, A. T. [3 ]
Scopel, E. [4 ]
机构
[1] Univ Tecnol Bolivar, Fac Ciencias Bas, Cartagena De Indias, Colombia
[2] Univ Fed Santa Maria, Santa Maria, RS, Brazil
[3] Univ Fed Rio Grande Do Sul, Porto Alegre, RS, Brazil
[4] Inst Fed Educ Ciencia & Tecnol Rio Grande Do Sul, Caxias Do Sul, RS, Brazil
关键词
Mean topological dimension; Metric mean dimension; Mean Hausdorff dimension; Topological entropy; Box dimension; Hausdorff dimension;
D O I
10.1007/s12346-024-01100-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let f:M -> M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f:\mathbb {M}\rightarrow \mathbb {M}$$\end{document} be a continuous map on a compact metric space M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {M}$$\end{document} equipped with a fixed metric d, and let tau\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau $$\end{document} be the topology on M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {M}$$\end{document} induced by d. We denote by M(tau)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {M}(\tau )$$\end{document} the set consisting of all metrics on M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {M}$$\end{document} that are equivalent to d. Let mdimM(M,d,f)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \text {mdim}_{\text {M}}(\mathbb {M},d, f)$$\end{document} and mdimH(M,d,f)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \text {mdim}_{\text {H}} (\mathbb {M},d, f)$$\end{document} be, respectively, the metric mean dimension and mean Hausdorff dimension of f. First, we will establish some fundamental properties of the mean Hausdorff dimension. Furthermore, it is important to note that mdimM(M,d,f)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \text {mdim}_{\text {M}}(\mathbb {M},d, f)$$\end{document} and mdimH(M,d,f)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \text {mdim}_{\text {H}} (\mathbb {M},d, f)$$\end{document} depend on the metric d chosen for M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {M}$$\end{document}. In this work, we will prove that, for a fixed dynamical system f:M -> M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f:\mathbb {M}\rightarrow \mathbb {M}$$\end{document}, the functions mdimM(M,f):M(tau)-> R boolean OR{infinity}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text {mdim}_{\text {M}} (\mathbb {M}, f):\mathbb {M}(\tau )\rightarrow \mathbb {R}\cup \{\infty \}$$\end{document} and mdimH(M,f):M(tau)-> R boolean OR{infinity}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \text {mdim}_{\text {H}}(\mathbb {M}, f): \mathbb {M}(\tau )\rightarrow \mathbb {R}\cup \{\infty \}$$\end{document} are not continuous, where mdimM(M,f)(rho)=mdimM(M,rho,f)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \text {mdim}_{\text {M}}(\mathbb {M}, f) (\rho )= \text {mdim}_{\text {M}} (\mathbb {M},\rho , f)$$\end{document} and mdimH(M,f)(rho)=mdimH(M,rho,f)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \text {mdim}_{\text {H}}(\mathbb {M}, f) (\rho )= \text {mdim}_{\text {H}} (\mathbb {M},\rho , f)$$\end{document} for any rho is an element of M(tau)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho \in \mathbb {M}(\tau )$$\end{document}. Furthermore, we will present examples of certain classes of metrics for which the metric mean dimension is a continuous function.
引用
收藏
页数:35
相关论文
共 50 条
  • [31] The metric mean dimension of hyperspace induced by symbolic dynamical systems
    Huang, Xiaojun
    Wang, Xian
    INTERNATIONAL JOURNAL OF GENERAL SYSTEMS, 2022, 51 (06) : 592 - 607
  • [32] A variational principle for the metric mean dimension of free semigroup actions
    Carvalho, Maria
    Rodrigues, Fagner B.
    Varandas, Paulo
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2022, 42 (01) : 65 - 85
  • [33] Upper metric mean dimension with potential for amenable group actions
    Chen, Hu
    Li, Zhiming
    STUDIA MATHEMATICA, 2025, 280 (03) : 269 - 304
  • [34] Typical Conservative Homeomorphisms Have Total Metric Mean Dimension
    Lacerda, Gabriel
    Romana, Sergio
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2024, 70 (11) : 7664 - 7672
  • [35] Some Variational Principles for the Metric Mean Dimension of a Semigroup Action
    Fagner B. Rodrigues
    Thomas Jacobus
    Marcus V. Silva
    Journal of Dynamical and Control Systems, 2023, 29 : 919 - 944
  • [36] Variational principle of metric mean dimension and rate distortion dimension for amenable group actions
    Li, Junye
    Ji, Yong
    Zhan, Tian
    Zhang, Yuanyuan
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2025, 546 (01)
  • [37] Bowen's equations for upper metric mean dimension with potential
    Yang, Rui
    Chen, Ercai
    Zhou, Xiaoyao
    NONLINEARITY, 2022, 35 (09) : 4905 - 4938
  • [38] Some Variational Principles for the Metric Mean Dimension of a Semigroup Action
    Rodrigues, Fagner B. B.
    Jacobus, Thomas
    Silva, Marcus V. V.
    JOURNAL OF DYNAMICAL AND CONTROL SYSTEMS, 2023, 29 (03) : 919 - 944
  • [39] Weighted upper metric mean dimension for amenable group actions
    Tang, Dingxuan
    Wu, Haiyan
    Li, Zhiming
    DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL, 2020, 35 (03): : 382 - 397
  • [40] HAUSDORFF DIMENSION OF CARTESIAN PRODUCTS OF METRIC SPACES
    WEGMANN, H
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1971, 246 : 46 - &