Metric Mean Dimension and Mean Hausdorff Dimension Varying the Metric

被引:1
|
作者
Muentes, J. [1 ]
Becker, A. J. [2 ]
Baraviera, A. T. [3 ]
Scopel, E. [4 ]
机构
[1] Univ Tecnol Bolivar, Fac Ciencias Bas, Cartagena De Indias, Colombia
[2] Univ Fed Santa Maria, Santa Maria, RS, Brazil
[3] Univ Fed Rio Grande Do Sul, Porto Alegre, RS, Brazil
[4] Inst Fed Educ Ciencia & Tecnol Rio Grande Do Sul, Caxias Do Sul, RS, Brazil
关键词
Mean topological dimension; Metric mean dimension; Mean Hausdorff dimension; Topological entropy; Box dimension; Hausdorff dimension;
D O I
10.1007/s12346-024-01100-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let f:M -> M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f:\mathbb {M}\rightarrow \mathbb {M}$$\end{document} be a continuous map on a compact metric space M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {M}$$\end{document} equipped with a fixed metric d, and let tau\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau $$\end{document} be the topology on M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {M}$$\end{document} induced by d. We denote by M(tau)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {M}(\tau )$$\end{document} the set consisting of all metrics on M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {M}$$\end{document} that are equivalent to d. Let mdimM(M,d,f)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \text {mdim}_{\text {M}}(\mathbb {M},d, f)$$\end{document} and mdimH(M,d,f)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \text {mdim}_{\text {H}} (\mathbb {M},d, f)$$\end{document} be, respectively, the metric mean dimension and mean Hausdorff dimension of f. First, we will establish some fundamental properties of the mean Hausdorff dimension. Furthermore, it is important to note that mdimM(M,d,f)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \text {mdim}_{\text {M}}(\mathbb {M},d, f)$$\end{document} and mdimH(M,d,f)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \text {mdim}_{\text {H}} (\mathbb {M},d, f)$$\end{document} depend on the metric d chosen for M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {M}$$\end{document}. In this work, we will prove that, for a fixed dynamical system f:M -> M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f:\mathbb {M}\rightarrow \mathbb {M}$$\end{document}, the functions mdimM(M,f):M(tau)-> R boolean OR{infinity}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text {mdim}_{\text {M}} (\mathbb {M}, f):\mathbb {M}(\tau )\rightarrow \mathbb {R}\cup \{\infty \}$$\end{document} and mdimH(M,f):M(tau)-> R boolean OR{infinity}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \text {mdim}_{\text {H}}(\mathbb {M}, f): \mathbb {M}(\tau )\rightarrow \mathbb {R}\cup \{\infty \}$$\end{document} are not continuous, where mdimM(M,f)(rho)=mdimM(M,rho,f)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \text {mdim}_{\text {M}}(\mathbb {M}, f) (\rho )= \text {mdim}_{\text {M}} (\mathbb {M},\rho , f)$$\end{document} and mdimH(M,f)(rho)=mdimH(M,rho,f)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \text {mdim}_{\text {H}}(\mathbb {M}, f) (\rho )= \text {mdim}_{\text {H}} (\mathbb {M},\rho , f)$$\end{document} for any rho is an element of M(tau)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho \in \mathbb {M}(\tau )$$\end{document}. Furthermore, we will present examples of certain classes of metrics for which the metric mean dimension is a continuous function.
引用
收藏
页数:35
相关论文
共 50 条
  • [21] On Relative Metric Mean Dimension with Potential and Variational Principles
    Wu, Weisheng
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2023, 35 (03) : 2313 - 2335
  • [22] Genericity of Continuous Maps with Positive Metric Mean Dimension
    Jeovanny Muentes Acevedo
    Results in Mathematics, 2022, 77
  • [23] Generic homeomorphisms have full metric mean dimension
    Carvalho, Maria
    Rodrigues, Fagner B.
    Varandas, Paulo
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2022, 42 (01) : 40 - 64
  • [24] METRIC MEAN DIMENSION FOR ALGEBRAIC ACTIONS OF SOFIC GROUPS
    Hayes, Ben
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 369 (10) : 6853 - 6897
  • [25] Some Notes on Variational Principle for Metric Mean Dimension
    Yang, Rui
    Chen, Ercai
    Zhou, Xiaoyao
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2023, 69 (05) : 2796 - 2800
  • [26] Genericity of Continuous Maps with Positive Metric Mean Dimension
    Muentes Acevedo, Jeovanny
    RESULTS IN MATHEMATICS, 2022, 77 (01)
  • [27] Metric mean dimension via subshifts of compact type
    Pessil, Gustavo
    NONLINEARITY, 2025, 38 (04)
  • [28] On Variational Principles of Metric Mean Dimension on Subsets in Feldman-Katok Metric
    Gao, Kun Mei
    Zhang, Rui Feng
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2024, 40 (10) : 2519 - 2536
  • [29] Hausdorff dimension of wiggly metric spaces
    Azzam, Jonas
    ARKIV FOR MATEMATIK, 2015, 53 (01): : 1 - 36
  • [30] Variational principles for Feldman-Katok metric mean dimension
    Xie, Yunxiang
    Chen, Ercai
    Yang, Rui
    DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL, 2025, 40 (01): : 23 - 34