Metric Mean Dimension and Mean Hausdorff Dimension Varying the Metric

被引:1
|
作者
Muentes, J. [1 ]
Becker, A. J. [2 ]
Baraviera, A. T. [3 ]
Scopel, E. [4 ]
机构
[1] Univ Tecnol Bolivar, Fac Ciencias Bas, Cartagena De Indias, Colombia
[2] Univ Fed Santa Maria, Santa Maria, RS, Brazil
[3] Univ Fed Rio Grande Do Sul, Porto Alegre, RS, Brazil
[4] Inst Fed Educ Ciencia & Tecnol Rio Grande Do Sul, Caxias Do Sul, RS, Brazil
关键词
Mean topological dimension; Metric mean dimension; Mean Hausdorff dimension; Topological entropy; Box dimension; Hausdorff dimension;
D O I
10.1007/s12346-024-01100-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let f:M -> M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f:\mathbb {M}\rightarrow \mathbb {M}$$\end{document} be a continuous map on a compact metric space M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {M}$$\end{document} equipped with a fixed metric d, and let tau\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau $$\end{document} be the topology on M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {M}$$\end{document} induced by d. We denote by M(tau)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {M}(\tau )$$\end{document} the set consisting of all metrics on M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {M}$$\end{document} that are equivalent to d. Let mdimM(M,d,f)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \text {mdim}_{\text {M}}(\mathbb {M},d, f)$$\end{document} and mdimH(M,d,f)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \text {mdim}_{\text {H}} (\mathbb {M},d, f)$$\end{document} be, respectively, the metric mean dimension and mean Hausdorff dimension of f. First, we will establish some fundamental properties of the mean Hausdorff dimension. Furthermore, it is important to note that mdimM(M,d,f)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \text {mdim}_{\text {M}}(\mathbb {M},d, f)$$\end{document} and mdimH(M,d,f)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \text {mdim}_{\text {H}} (\mathbb {M},d, f)$$\end{document} depend on the metric d chosen for M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {M}$$\end{document}. In this work, we will prove that, for a fixed dynamical system f:M -> M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f:\mathbb {M}\rightarrow \mathbb {M}$$\end{document}, the functions mdimM(M,f):M(tau)-> R boolean OR{infinity}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text {mdim}_{\text {M}} (\mathbb {M}, f):\mathbb {M}(\tau )\rightarrow \mathbb {R}\cup \{\infty \}$$\end{document} and mdimH(M,f):M(tau)-> R boolean OR{infinity}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \text {mdim}_{\text {H}}(\mathbb {M}, f): \mathbb {M}(\tau )\rightarrow \mathbb {R}\cup \{\infty \}$$\end{document} are not continuous, where mdimM(M,f)(rho)=mdimM(M,rho,f)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \text {mdim}_{\text {M}}(\mathbb {M}, f) (\rho )= \text {mdim}_{\text {M}} (\mathbb {M},\rho , f)$$\end{document} and mdimH(M,f)(rho)=mdimH(M,rho,f)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \text {mdim}_{\text {H}}(\mathbb {M}, f) (\rho )= \text {mdim}_{\text {H}} (\mathbb {M},\rho , f)$$\end{document} for any rho is an element of M(tau)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho \in \mathbb {M}(\tau )$$\end{document}. Furthermore, we will present examples of certain classes of metrics for which the metric mean dimension is a continuous function.
引用
收藏
页数:35
相关论文
共 50 条
  • [1] Amenable metric mean dimension and amenable mean Hausdorff dimension of product sets and metric varying
    Li, Xianqiang
    Luo, Xiaofang
    CHAOS SOLITONS & FRACTALS, 2025, 191
  • [2] On Variational Principles for Metric Mean Dimension
    Shi, Ruxi
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2022, 68 (07) : 4282 - 4288
  • [3] Metric Mean Dimension and Analog Compression
    Gutman, Yonatan
    Spiewak, Adam
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2020, 66 (11) : 6977 - 6998
  • [4] Mean Dimension and Metric Mean Dimension for Non-autonomous Dynamical Systems
    Rodrigues, Fagner B.
    Acevedo, Jeovanny Muentes
    JOURNAL OF DYNAMICAL AND CONTROL SYSTEMS, 2022, 28 (04) : 697 - 723
  • [5] Mean Dimension and Metric Mean Dimension for Non-autonomous Dynamical Systems
    Fagner B. Rodrigues
    Jeovanny Muentes Acevedo
    Journal of Dynamical and Control Systems, 2022, 28 : 697 - 723
  • [6] VARIATIONAL RELATIONS FOR METRIC MEAN DIMENSION AND RATE DISTORTION DIMENSION
    Wang, Tao
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2021, 41 (10) : 4593 - 4608
  • [7] Metric Mean Dimension via Preimage Structures
    Chunlin Liu
    Fagner B. Rodrigues
    Journal of Statistical Physics, 191
  • [8] Measure-theoretic metric mean dimension
    Yang, Rui
    Chen, Ercai
    Zhou, Xiaoyao
    STUDIA MATHEMATICA, 2025, 280 (01)
  • [9] ON RELATIONSHIP BETWEEN HAUSDORFF DIMENSION AND METRIC DIMENSION
    VOSBURG, AC
    PACIFIC JOURNAL OF MATHEMATICS, 1967, 23 (01) : 183 - &
  • [10] Variational principle for metric mean dimension with potential
    Wang, Yunping
    He, Qianhui
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2023, : 657 - 681