Metric Mean Dimension and Mean Hausdorff Dimension Varying the Metric

被引:1
作者
Muentes, J. [1 ]
Becker, A. J. [2 ]
Baraviera, A. T. [3 ]
Scopel, E. [4 ]
机构
[1] Univ Tecnol Bolivar, Fac Ciencias Bas, Cartagena De Indias, Colombia
[2] Univ Fed Santa Maria, Santa Maria, RS, Brazil
[3] Univ Fed Rio Grande Do Sul, Porto Alegre, RS, Brazil
[4] Inst Fed Educ Ciencia & Tecnol Rio Grande Do Sul, Caxias Do Sul, RS, Brazil
关键词
Mean topological dimension; Metric mean dimension; Mean Hausdorff dimension; Topological entropy; Box dimension; Hausdorff dimension;
D O I
10.1007/s12346-024-01100-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let f:M -> M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f:\mathbb {M}\rightarrow \mathbb {M}$$\end{document} be a continuous map on a compact metric space M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {M}$$\end{document} equipped with a fixed metric d, and let tau\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau $$\end{document} be the topology on M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {M}$$\end{document} induced by d. We denote by M(tau)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {M}(\tau )$$\end{document} the set consisting of all metrics on M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {M}$$\end{document} that are equivalent to d. Let mdimM(M,d,f)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \text {mdim}_{\text {M}}(\mathbb {M},d, f)$$\end{document} and mdimH(M,d,f)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \text {mdim}_{\text {H}} (\mathbb {M},d, f)$$\end{document} be, respectively, the metric mean dimension and mean Hausdorff dimension of f. First, we will establish some fundamental properties of the mean Hausdorff dimension. Furthermore, it is important to note that mdimM(M,d,f)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \text {mdim}_{\text {M}}(\mathbb {M},d, f)$$\end{document} and mdimH(M,d,f)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \text {mdim}_{\text {H}} (\mathbb {M},d, f)$$\end{document} depend on the metric d chosen for M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {M}$$\end{document}. In this work, we will prove that, for a fixed dynamical system f:M -> M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f:\mathbb {M}\rightarrow \mathbb {M}$$\end{document}, the functions mdimM(M,f):M(tau)-> R boolean OR{infinity}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text {mdim}_{\text {M}} (\mathbb {M}, f):\mathbb {M}(\tau )\rightarrow \mathbb {R}\cup \{\infty \}$$\end{document} and mdimH(M,f):M(tau)-> R boolean OR{infinity}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \text {mdim}_{\text {H}}(\mathbb {M}, f): \mathbb {M}(\tau )\rightarrow \mathbb {R}\cup \{\infty \}$$\end{document} are not continuous, where mdimM(M,f)(rho)=mdimM(M,rho,f)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \text {mdim}_{\text {M}}(\mathbb {M}, f) (\rho )= \text {mdim}_{\text {M}} (\mathbb {M},\rho , f)$$\end{document} and mdimH(M,f)(rho)=mdimH(M,rho,f)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \text {mdim}_{\text {H}}(\mathbb {M}, f) (\rho )= \text {mdim}_{\text {H}} (\mathbb {M},\rho , f)$$\end{document} for any rho is an element of M(tau)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho \in \mathbb {M}(\tau )$$\end{document}. Furthermore, we will present examples of certain classes of metrics for which the metric mean dimension is a continuous function.
引用
收藏
页数:35
相关论文
共 25 条
[1]   Density of the Level Sets of the Metric Mean Dimension for Homeomorphisms [J].
Acevedo, Jeovanny M. ;
Romana, Sergio ;
Arias, Raibel .
JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2024, 37 (2) :1965-1978
[2]   Genericity of Homeomorphisms with Full Mean Hausdorff Dimension [J].
Acevedo, Jeovanny Muentes .
REGULAR & CHAOTIC DYNAMICS, 2024, 29 (03) :474-490
[3]  
Acevedo JM., 2022, RM, V77, P1
[4]   A Variational Principle for the Metric Mean Dimension of Level Sets [J].
Backes, Lucas ;
Rodrigues, Fagner B. .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2023, 69 (09) :5485-5496
[5]   A convex analysis approach to the metric mean dimension: Limits of scaled pressures and variational principles [J].
Carvalho, Maria ;
Pessil, Gustavo ;
Varandas, Paulo .
ADVANCES IN MATHEMATICS, 2024, 436
[6]   Generic homeomorphisms have full metric mean dimension [J].
Carvalho, Maria ;
Rodrigues, Fagner B. ;
Varandas, Paulo .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2022, 42 (01) :40-64
[7]   Upper metric mean dimensions with potential on subsets [J].
Cheng, Dandan ;
Li, Zhiming ;
Selmi, Bilel .
NONLINEARITY, 2021, 34 (02) :852-867
[8]   MINIMAL SUBSHIFTS OF ARBITRARY MEAN TOPOLOGICAL DIMENSION [J].
Dou, Dou .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2017, 37 (03) :1411-1424
[9]  
Falconer K, 2004, FRACTAL GEOMETRY MAT
[10]  
Furstenberg Harry, 1967, MATH SYST THEORY, V1, P1, DOI [DOI 10.1007/BF01692494, 10.1007/BF01692494]