Privacy-Preserving Breast Cancer Classification: A Federated Transfer Learning Approach

被引:4
|
作者
Selvakanmani, S. [1 ]
Devi, G. Dharani [2 ]
Rekha, V [3 ]
Jeyalakshmi, J. [4 ]
机构
[1] RMK Engn Coll, Dept Informat Technol, Chennai, Tamil Nadu, India
[2] Rajalakshmi Engn Coll, Dept Comp Sci & Engn, Chennai, Tamil Nadu, India
[3] Panimalar Engn Coll, Dept Artificial Intelligence & Data Sci, Chennai, Tamil Nadu, India
[4] Amrita Vishwa Vidhyapeetham, Amrita Sch Comp, Dept Comp Sci & Engn, Chennai, India
来源
关键词
Breast cancer; Transfer learning; Federated learning; Deep learning; ResNet; Domain adaptation; Privacy-preserving; Classification; Medical imaging; Data privacy;
D O I
10.1007/s10278-024-01035-8
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Breast cancer is deadly cancer causing a considerable number of fatalities among women in worldwide. To enhance patient outcomes as well as survival rates, early and accurate detection is crucial. Machine learning techniques, particularly deep learning, have demonstrated impressive success in various image recognition tasks, including breast cancer classification. However, the reliance on large labeled datasets poses challenges in the medical domain due to privacy issues and data silos. This study proposes a novel transfer learning approach integrated into a federated learning framework to solve the limitations of limited labeled data and data privacy in collaborative healthcare settings. For breast cancer classification, the mammography and MRO images were gathered from three different medical centers. Federated learning, an emerging privacy-preserving paradigm, empowers multiple medical institutions to jointly train the global model while maintaining data decentralization. Our proposed methodology capitalizes on the power of pre-trained ResNet, a deep neural network architecture, as a feature extractor. By fine-tuning the higher layers of ResNet using breast cancer datasets from diverse medical centers, we enable the model to learn specialized features relevant to different domains while leveraging the comprehensive image representations acquired from large-scale datasets like ImageNet. To overcome domain shift challenges caused by variations in data distributions across medical centers, we introduce domain adversarial training. The model learns to minimize the domain discrepancy while maximizing classification accuracy, facilitating the acquisition of domain-invariant features. We conducted extensive experiments on diverse breast cancer datasets obtained from multiple medical centers. Comparative analysis was performed to evaluate the proposed approach against traditional standalone training and federated learning without domain adaptation. When compared with traditional models, our proposed model showed a classification accuracy of 98.8% and a computational time of 12.22 s. The results showcase promising enhancements in classification accuracy and model generalization, underscoring the potential of our method in improving breast cancer classification performance while upholding data privacy in a federated healthcare environment.
引用
收藏
页码:1488 / 1504
页数:17
相关论文
共 50 条
  • [21] Privacy-Preserving and Reliable Decentralized Federated Learning
    Gao, Yuanyuan
    Zhang, Lei
    Wang, Lulu
    Choo, Kim-Kwang Raymond
    Zhang, Rui
    IEEE TRANSACTIONS ON SERVICES COMPUTING, 2023, 16 (04) : 2879 - 2891
  • [22] A Personalized Privacy-Preserving Scheme for Federated Learning
    Li, Zhenyu
    2022 IEEE INTERNATIONAL CONFERENCE ON ELECTRICAL ENGINEERING, BIG DATA AND ALGORITHMS (EEBDA), 2022, : 1352 - 1356
  • [23] POSTER: Privacy-preserving Federated Active Learning
    Kurniawan, Hendra
    Mambo, Masahiro
    SCIENCE OF CYBER SECURITY, SCISEC 2022 WORKSHOPS, 2022, 1680 : 223 - 226
  • [24] Privacy-preserving federated learning for radiotherapy applications
    Hayati, H.
    Heijmans, S.
    Persoon, L.
    Murguia, C.
    van de Wouw, N.
    RADIOTHERAPY AND ONCOLOGY, 2023, 182 : S238 - S240
  • [25] PPFLV: privacy-preserving federated learning with verifiability
    Zhou, Qun
    Shen, Wenting
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2024, 27 (09): : 12727 - 12743
  • [26] Contribution Measurement in Privacy-Preserving Federated Learning
    Hsu, Ruei-hau
    Yu, Yi-an
    Su, Hsuan-cheng
    JOURNAL OF INFORMATION SCIENCE AND ENGINEERING, 2024, 40 (06) : 1173 - 1196
  • [27] Privacy-Preserving Federated Learning in Fog Computing
    Zhou, Chunyi
    Fu, Anmin
    Yu, Shui
    Yang, Wei
    Wang, Huaqun
    Zhang, Yuqing
    IEEE INTERNET OF THINGS JOURNAL, 2020, 7 (11): : 10782 - 10793
  • [28] Federated Learning for Privacy-Preserving Speaker Recognition
    Woubie, Abraham
    Backstrom, Tom
    IEEE ACCESS, 2021, 9 : 149477 - 149485
  • [29] Privacy-Preserving Decentralized Aggregation for Federated Learning
    Jeon, Beomyeol
    Ferdous, S. M.
    Rahmant, Muntasir Raihan
    Walid, Anwar
    IEEE CONFERENCE ON COMPUTER COMMUNICATIONS WORKSHOPS (IEEE INFOCOM WKSHPS 2021), 2021,
  • [30] Privacy-Preserving Federated Learning via Disentanglement
    Zhou, Wenjie
    Li, Piji
    Han, Zhaoyang
    Lu, Xiaozhen
    Li, Juan
    Ren, Zhaochun
    Liu, Zhe
    PROCEEDINGS OF THE 32ND ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2023, 2023, : 3606 - 3615