Privacy-Preserving Breast Cancer Classification: A Federated Transfer Learning Approach

被引:4
|
作者
Selvakanmani, S. [1 ]
Devi, G. Dharani [2 ]
Rekha, V [3 ]
Jeyalakshmi, J. [4 ]
机构
[1] RMK Engn Coll, Dept Informat Technol, Chennai, Tamil Nadu, India
[2] Rajalakshmi Engn Coll, Dept Comp Sci & Engn, Chennai, Tamil Nadu, India
[3] Panimalar Engn Coll, Dept Artificial Intelligence & Data Sci, Chennai, Tamil Nadu, India
[4] Amrita Vishwa Vidhyapeetham, Amrita Sch Comp, Dept Comp Sci & Engn, Chennai, India
来源
关键词
Breast cancer; Transfer learning; Federated learning; Deep learning; ResNet; Domain adaptation; Privacy-preserving; Classification; Medical imaging; Data privacy;
D O I
10.1007/s10278-024-01035-8
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Breast cancer is deadly cancer causing a considerable number of fatalities among women in worldwide. To enhance patient outcomes as well as survival rates, early and accurate detection is crucial. Machine learning techniques, particularly deep learning, have demonstrated impressive success in various image recognition tasks, including breast cancer classification. However, the reliance on large labeled datasets poses challenges in the medical domain due to privacy issues and data silos. This study proposes a novel transfer learning approach integrated into a federated learning framework to solve the limitations of limited labeled data and data privacy in collaborative healthcare settings. For breast cancer classification, the mammography and MRO images were gathered from three different medical centers. Federated learning, an emerging privacy-preserving paradigm, empowers multiple medical institutions to jointly train the global model while maintaining data decentralization. Our proposed methodology capitalizes on the power of pre-trained ResNet, a deep neural network architecture, as a feature extractor. By fine-tuning the higher layers of ResNet using breast cancer datasets from diverse medical centers, we enable the model to learn specialized features relevant to different domains while leveraging the comprehensive image representations acquired from large-scale datasets like ImageNet. To overcome domain shift challenges caused by variations in data distributions across medical centers, we introduce domain adversarial training. The model learns to minimize the domain discrepancy while maximizing classification accuracy, facilitating the acquisition of domain-invariant features. We conducted extensive experiments on diverse breast cancer datasets obtained from multiple medical centers. Comparative analysis was performed to evaluate the proposed approach against traditional standalone training and federated learning without domain adaptation. When compared with traditional models, our proposed model showed a classification accuracy of 98.8% and a computational time of 12.22 s. The results showcase promising enhancements in classification accuracy and model generalization, underscoring the potential of our method in improving breast cancer classification performance while upholding data privacy in a federated healthcare environment.
引用
收藏
页码:1488 / 1504
页数:17
相关论文
共 50 条
  • [1] Privacy-preserving Heterogeneous Federated Transfer Learning
    Gao, Dashan
    Liu, Yang
    Huang, Anbu
    Ju, Ce
    Yu, Han
    Yang, Qiang
    2019 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2019, : 2552 - 2559
  • [2] AddShare: A Privacy-Preserving Approach for Federated Learning
    Asare, Bernard Atiemo
    Branco, Paula
    Kiringa, Iluju
    Yeap, Tet
    COMPUTER SECURITY. ESORICS 2023 INTERNATIONAL WORKSHOPS, PT I, 2024, 14398 : 299 - 309
  • [3] A Syntactic Approach for Privacy-Preserving Federated Learning
    Choudhury, Olivia
    Gkoulalas-Divanis, Aris
    Salonidis, Theodoros
    Sylla, Issa
    Park, Yoonyoung
    Hsu, Grace
    Das, Amar
    ECAI 2020: 24TH EUROPEAN CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2020, 325 : 1762 - 1769
  • [4] Privacy-preserving federated learning with non-transfer learning
    Xu M.
    Li X.
    Xi'an Dianzi Keji Daxue Xuebao/Journal of Xidian University, 2023, 50 (04): : 89 - 99
  • [5] A Novel Approach for Differential Privacy-Preserving Federated Learning
    Elgabli, Anis
    Mesbah, Wessam
    IEEE OPEN JOURNAL OF THE COMMUNICATIONS SOCIETY, 2025, 6 : 466 - 476
  • [6] Privacy-Preserving Federated Transfer Learning for Driver Drowsiness Detection
    Zhang, Linlin
    Saito, Hideo
    Yang, Liang
    Wu, Jiajie
    IEEE ACCESS, 2022, 10 : 80565 - 80574
  • [7] Privacy-Preserving Personalized Federated Learning
    Hu, Rui
    Guo, Yuanxiong
    Li, Hongning
    Pei, Qingqi
    Gong, Yanmin
    ICC 2020 - 2020 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC), 2020,
  • [8] FedUNA: A Federated Learning Approach for Robust and Privacy-Preserving Pothole Classification using EfficientNet
    Khan, Muhammad Numan Ali
    Mohd, Mohd Norzali Haji
    Khan, Fawad Salam
    Ab Rahman, Tasiransurini Binti
    Sheikh, Usman Ullah
    Bakht, Muhammad Paend
    2024 IEEE 8TH INTERNATIONAL CONFERENCE ON SIGNAL AND IMAGE PROCESSING APPLICATIONS, ICSIPA, 2024,
  • [9] Frameworks for Privacy-Preserving Federated Learning
    Phong, Le Trieu
    Phuong, Tran Thi
    Wang, Lihua
    Ozawa, Seiichi
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2024, E107D (01) : 2 - 12
  • [10] Adaptive privacy-preserving federated learning
    Liu, Xiaoyuan
    Li, Hongwei
    Xu, Guowen
    Lu, Rongxing
    He, Miao
    PEER-TO-PEER NETWORKING AND APPLICATIONS, 2020, 13 (06) : 2356 - 2366