On the generation of force required for actin-based motility

被引:1
作者
Salvadori, Alberto [1 ,2 ]
Bonanno, Claudia [1 ]
Serpelloni, Mattia [1 ,2 ]
McMeeking, Robert M. [1 ,3 ,4 ,5 ]
机构
[1] UNIBS, Mechanobiol Res Ctr, I-25123 Brescia, Italy
[2] Univ Brescia, Dept Mech & Ind Engn, Via Branze 38, I-25123 Brescia, Italy
[3] Univ Calif Santa Barbara, Mat & Mech Engn Dept, Santa Barbara, CA 93106 USA
[4] Univ Aberdeen, Kings Coll, Sch Engn, Aberdeen AB24 3UE, Scotland
[5] INM Leibniz Inst New Mat, Campus D2 2, Saarbrucken, Germany
来源
SCIENTIFIC REPORTS | 2024年 / 14卷 / 01期
关键词
Actin-based motility; Chemo-transport-mechanics; Continuum mechanics; Finite elements; High performance computing; LISTERIA-MONOCYTOGENES; CELL MOTILITY; GROWTH; MODEL; DRIVEN; DYNAMICS; VELOCITY; COMPLEX;
D O I
10.1038/s41598-024-69422-3
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The fundamental question of how forces are generated in a motile cell, a lamellipodium, and a comet tail is the subject of this note. It is now well established that cellular motility results from the polymerization of actin, the most abundant protein in eukaryotic cells, into an interconnected set of filaments. We portray this process in a continuum mechanics framework, claiming that polymerization promotes a mechanical swelling in a narrow zone around the nucleation loci, which ultimately results in cellular or bacterial motility. To this aim, a new paradigm in continuum multi-physics has been designed, departing from the well-known theory of Larch & eacute;-Cahn chemo-transport-mechanics. In this note, we set up the theory of network growth and compare the outcomes of numerical simulations with experimental evidence.
引用
收藏
页数:12
相关论文
共 61 条
  • [31] Nonlinear study of symmetry breaking in actin gels: Implications for cellular motility
    John, Karin
    Peyla, Philippe
    Kassner, Klaus
    Prost, Jacques
    Misbah, Chaouqi
    [J]. PHYSICAL REVIEW LETTERS, 2008, 100 (06)
  • [32] How actin network dynamics control the onset of actin-based motility
    Kawska, Agnieszka
    Carvalho, Kevin
    Manzi, John
    Boujemaa-Paterski, Rajaa
    Blanchoin, Laurent
    Martiel, Jean-Louis
    Sykes, Cecile
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2012, 109 (36) : 14440 - 14445
  • [33] On a poroviscoelastic model for cell crawling
    Kimpton, L. S.
    Whiteley, J. P.
    Waters, S. L.
    Oliver, J. M.
    [J]. JOURNAL OF MATHEMATICAL BIOLOGY, 2015, 70 (1-2) : 133 - 171
  • [34] Multiple travelling-wave solutions in a minimal model for cell motility
    Kimpton, L. S.
    Whiteley, J. P.
    Waters, S. L.
    King, J. R.
    Oliver, J. M.
    [J]. MATHEMATICAL MEDICINE AND BIOLOGY-A JOURNAL OF THE IMA, 2013, 30 (03): : 241 - 272
  • [35] Measurements of spatiotemporal changes in G-actin concentration reveal its effect on stimulus-induced actin assembly and lamellipodium extension
    Kiuchi, Tai
    Nagai, Tomoaki
    Ohashi, Kazumasa
    Mizuno, Kensaku
    [J]. JOURNAL OF CELL BIOLOGY, 2011, 193 (02) : 365 - 380
  • [36] KOCKS C, 1993, J CELL SCI, V105, P699
  • [37] The actin comet guides the way: How Listeria actin subversion has impacted cell biology, infection biology and structural biology
    Kuhn, Sonja
    Enninga, Jost
    [J]. CELLULAR MICROBIOLOGY, 2020, 22 (04)
  • [38] Steps and fluctuations of Listeria monocytogenes during actin-based motility
    Kuo, SC
    McGrath, JL
    [J]. NATURE, 2000, 407 (6807) : 1026 - 1029
  • [39] A Microscopic Formulation for the Actin-Driven Motion of Listeria in Curved Paths
    Lin, Yuan
    Shenoy, V. B.
    Hu, Bin
    Bai, Limiao
    [J]. BIOPHYSICAL JOURNAL, 2010, 99 (04) : 1043 - 1052
  • [40] ACTIN-BASED MOVEMENT OF LISTERIA-MONOCYTOGENES - ACTIN ASSEMBLY RESULTS FROM THE LOCAL MAINTENANCE OF UNCAPPED FILAMENT BARBED ENDS AT THE BACTERIUM SURFACE
    MARCHAND, JB
    MOREAU, P
    PAOLETTI, A
    COSSART, P
    CARLIER, MF
    PANTALONI, D
    [J]. JOURNAL OF CELL BIOLOGY, 1995, 130 (02) : 331 - 343