Observations of Relativistic Electron Precipitation Due To Combined Scattering of Whistler-Mode and EMIC Waves

被引:4
作者
Bashir, M. Fraz [1 ]
Artemyev, Anton [1 ,2 ]
Zhang, Xiao-Jia [1 ,3 ]
Angelopoulos, Vassilis [1 ]
Tsai, Ethan [1 ]
Wilkins, Colin [1 ]
机构
[1] Univ Calif Los Angeles, Earth Planetary & Space Sci, Los Angeles, CA 90095 USA
[2] RAS, Space Res Inst, Moscow, Russia
[3] Univ Texas Dallas, Dept Phys, Richardson, TX USA
基金
美国国家航空航天局;
关键词
whistler waves; EMIC waves; energetic electron precipitation; wave-particle interaction; nonlinear effects; inner magnetosphere; VAN ALLEN PROBES; ION-CYCLOTRON WAVES; CHORUS; ACCELERATION; MAGNETOSPHERE; DIFFUSION; LOSSES; SCALES; NOAA;
D O I
10.1029/2024JA032432
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The two most important wave modes responsible for energetic electron scattering to the Earth's ionosphere are electromagnetic ion cyclotron (EMIC) waves and whistler-mode waves. These wave modes operate in different energy ranges: whistler-mode waves are mostly effective in scattering sub-relativistic electrons, whereas EMIC waves predominately scatter relativistic electrons. In this study, we report the direct observations of energetic electron (from 50 keV to 2.5 MeV) scattering driven by the combined effect of whistler-mode and EMIC waves using ELFIN measurements. We analyze five events showing EMIC-driven relativistic electron precipitation accompanied by bursts of whistler-driven precipitation over a wide energy range. These events reveal an enhancement of relativistic electron precipitation by EMIC waves during intervals of whistler-mode precipitation compared to intervals of EMIC-only precipitation. We discuss a possible mechanism responsible for such precipitation. We suggest that below the minimum resonance energy (Emin) of EMIC waves, the whistler-mode wave may both scatter electrons into the loss-cone and accelerate them to higher energy (1-3 MeV). Electrons accelerated above Emin resonate with EMIC waves that, in turn, quickly scatter those electrons into the loss-cone. This enhances relativistic electron precipitation beyond what EMIC waves alone could achieve. We present theoretical support for this mechanism, along with observational evidence from the ELFIN mission. We discuss methodologies for further observational investigations of this combined whistler-mode and EMIC precipitation. Energetic electron precipitation into the upper atmosphere is an important loss process of outer radiation belt fluxes. Whistler-mode and electromagnetic ion cyclotron (EMIC) waves are two of the most important wave modes responsible for energetic electron scattering to the Earth's ionosphere through wave-particle interaction. These wave modes typically drive losses of electrons in different energy ranges (above 1 MeV for EMIC waves and tens to hundreds of keV for whistler-mode waves), occurring in different spatial regions. We report the first observations of energetic electron scattering driven by the combined effect of whistler-mode and EMIC waves. Our results from equatorial and low-altitude observations, and a data-driven test particle simulation explain the wide energy range of electron precipitation from tens of keVs to a few MeVs due to the combined whistler-mode and EMIC waves effect and explain the unusually high intensity of relativistic electron precipitation at such times. We report observations of energetic electron precipitation likely driven by concurrent whistle-mode and electromagnetic ion cyclotron (EMIC) waves The combined scattering of whistler-mode and EMIC waves leads to electron precipitation over a wide energy range of 50 keVs to a few MeVs This study highlights the potential nonlinear effects for explaining the observed energetic electron fluxes in the inner magnetosphere
引用
收藏
页数:13
相关论文
共 100 条
[1]   Chorus whistler wave source scales as determined from multipoint Van Allen Probe measurements [J].
Agapitov, O. ;
Blum, L. W. ;
Mozer, F. S. ;
Bonnell, J. W. ;
Wygant, J. .
GEOPHYSICAL RESEARCH LETTERS, 2017, 44 (06) :2634-2642
[2]   Synthetic Empirical Chorus Wave Model From Combined Van Allen Probes and Cluster Statistics [J].
Agapitov, O. V. ;
Mourenas, D. ;
Artemyev, A. V. ;
Mozer, F. S. ;
Hospodarsky, G. ;
Bonnell, J. ;
Krasnoselskikh, V. .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2018, 123 (01) :297-314
[3]   Nonresonant Scattering of Relativistic Electrons by Electromagnetic Ion Cyclotron Waves in Earth's Radiation Belts [J].
An, Xin ;
Artemyev, Anton ;
Angelopoulos, Vassilis ;
Zhang, Xiaojia ;
Mourenas, Didier ;
Bortnik, Jacob .
PHYSICAL REVIEW LETTERS, 2022, 129 (13)
[4]   Electron Dynamics in a Chorus Wave Field Generated From Particle-In-Cell Simulations [J].
An, Zeyu ;
Wu, Yifan ;
Tao, Xin .
GEOPHYSICAL RESEARCH LETTERS, 2022, 49 (03)
[5]   Energetic Electron Precipitation Driven by Electromagnetic Ion Cyclotron Waves from ELFIN's Low Altitude Perspective [J].
Angelopoulos, V. ;
Zhang, X. -j. ;
Artemyev, A. V. ;
Mourenas, D. ;
Tsai, E. ;
Wilkins, C. ;
Runov, A. ;
Liu, J. ;
Turner, D. L. ;
Li, W. ;
Khurana, K. ;
Wirz, R. E. ;
Sergeev, V. A. ;
Meng, X. ;
Wu, J. ;
Hartinger, M. D. ;
Raita, T. ;
Shen, Y. ;
An, X. ;
Shi, X. ;
Bashir, M. F. ;
Shen, X. ;
Gan, L. ;
Qin, M. ;
Capannolo, L. ;
Ma, Q. ;
Russell, C. L. ;
Masongsong, E. V. ;
Caron, R. ;
He, I. ;
Iglesias, L. ;
Jha, S. ;
King, J. ;
Kumar, S. ;
Le, K. ;
Mao, J. ;
McDermott, A. ;
Nguyen, K. ;
Norris, A. ;
Palla, A. ;
Roosnovo, A. ;
Tam, J. ;
Xie, E. ;
Yap, R. C. ;
Ye, S. ;
Young, C. ;
Adair, L. A. ;
Shaffer, C. ;
Chung, M. ;
Cruce, P. .
SPACE SCIENCE REVIEWS, 2023, 219 (05)
[6]   The ELFIN Mission [J].
Angelopoulos, V ;
Tsai, E. ;
Bingley, L. ;
Shaffer, C. ;
Turner, D. L. ;
Runov, A. ;
Li, W. ;
Liu, J. ;
Artemyev, A., V ;
Zhang, X-J ;
Strangeway, R. J. ;
Wirz, R. E. ;
Shprits, Y. Y. ;
Sergeev, V. A. ;
Caron, R. P. ;
Chung, M. ;
Cruce, P. ;
Greer, W. ;
Grimes, E. ;
Hector, K. ;
Lawson, M. J. ;
Leneman, D. ;
Masongsong, E., V ;
Russell, C. L. ;
Wilkins, C. ;
Hinkley, D. ;
Blake, J. B. ;
Adair, N. ;
Allen, M. ;
Anderson, M. ;
Arreola-Zamora, M. ;
Artinger, J. ;
Asher, J. ;
Branchevsky, D. ;
Capitelli, M. R. ;
Castro, R. ;
Chao, G. ;
Chung, N. ;
Cliffe, M. ;
Colton, K. ;
Costello, C. ;
Depe, D. ;
Domae, B. W. ;
Eldin, S. ;
Fitzgibbon, L. ;
Flemming, A. ;
Fox, I ;
Frederick, D. M. ;
Gilbert, A. ;
Gildemeister, A. .
SPACE SCIENCE REVIEWS, 2020, 216 (05)
[7]   The Space Physics Environment Data Analysis System (SPEDAS) [J].
Angelopoulos, V. ;
Cruce, P. ;
Drozdov, A. ;
Grimes, E. W. ;
Hatzigeorgiu, N. ;
King, D. A. ;
Larson, D. ;
Lewis, J. W. ;
McTiernan, J. M. ;
Roberts, D. A. ;
Russell, C. L. ;
Hori, T. ;
Kasahara, Y. ;
Kumamoto, A. ;
Matsuoka, A. ;
Miyashita, Y. ;
Miyoshi, Y. ;
Shinohara, I. ;
Teramoto, M. ;
Faden, J. B. ;
Halford, A. J. ;
McCarthy, M. ;
Millan, R. M. ;
Sample, J. G. ;
Smith, D. M. ;
Woodger, L. A. ;
Masson, A. ;
Narock, A. A. ;
Asamura, K. ;
Chang, T. F. ;
Chiang, C. -Y. ;
Kazama, Y. ;
Keika, K. ;
Matsuda, S. ;
Segawa, T. ;
Seki, K. ;
Shoji, M. ;
Tam, S. W. Y. ;
Umemura, N. ;
Wang, B. -J. ;
Wang, S. -Y. ;
Redmon, R. ;
Rodriguez, J. V. ;
Singer, H. J. ;
Vandegriff, J. ;
Abe, S. ;
Nose, M. ;
Shinbori, A. ;
Tanaka, Y. -M. ;
UeNo, S. .
SPACE SCIENCE REVIEWS, 2019, 215 (01)
[8]  
Angelopoulos V, 2008, SPACE SCI REV, V141, P5, DOI 10.1007/s11214-008-9336-1
[9]   Role of Ducting in Relativistic Electron Loss by Whistler-Mode Wave Scattering [J].
Artemyev, A., V ;
Demekhov, A. G. ;
Zhang, X. J. ;
Angelopoulos, V ;
Mourenas, D. ;
Fedorenko, Yu, V ;
Maninnen, J. ;
Tsai, E. ;
Wilkins, C. ;
Kasahara, S. ;
Miyoshi, Y. ;
Matsuoka, A. ;
Kasahara, Y. ;
Mitani, T. ;
Yokota, S. ;
Keika, K. ;
Hori, T. ;
Matsuda, S. ;
Nakamura, S. ;
Kitahara, M. ;
Takashima, T. ;
Shinohara, I .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2021, 126 (11)
[10]   Oblique Whistler-Mode Waves in the Earth's Inner Magnetosphere: Energy Distribution, Origins, and Role in Radiation Belt Dynamics [J].
Artemyev, Anton ;
Agapitov, Oleksiy ;
Mourenas, Didier ;
Krasnoselskikh, Vladimir ;
Shastun, Vitalii ;
Mozer, Forrest .
SPACE SCIENCE REVIEWS, 2016, 200 (1-4) :261-355