Prediction of non-muscle invasive bladder cancer recurrence using deep learning of pathology image

被引:1
作者
Wang, Guang-Yue [1 ,2 ]
Zhu, Jing-Fei [3 ]
Wang, Qi-Chao [1 ]
Qin, Jia-Xin [2 ,4 ]
Wang, Xin-Lei [2 ,4 ]
Liu, Xing [2 ,4 ]
Liu, Xin-Yu [2 ,4 ]
Chen, Jun-Zhi [2 ,4 ]
Zhu, Jie-Fei [5 ]
Zhuo, Shi-Chao [5 ]
Wu, Di [5 ]
Li, Na [6 ]
Chao, Liu [7 ,8 ]
Meng, Fan-Lai [9 ]
Lu, Hao [10 ]
Shi, Zhen-Duo [2 ,4 ,7 ,10 ]
Jia, Zhi-Gang [3 ]
Han, Cong-Hui [2 ,4 ,7 ,10 ]
机构
[1] Jiangsu Univ, Xuzhou Canc Hosp, Dept Urol, Affiliated Hosp, Xuzhou, Peoples R China
[2] Xuzhou Cent Hosp, Dept Urol, Jiefang South Rd 199, Xuzhou, Jiangsu, Peoples R China
[3] Jiangsu Normal Univ, Sch Math & Stat, Jiangsu Key Lab Educ Big Data Sci & Engn, 101,Shanghai Rd, Xuzhou, Jiangsu, Peoples R China
[4] Xuzhou Med Univ, Dept Urol, Xuzhou Clin Sch, Xuzhou, Peoples R China
[5] Xuzhou Cent Hosp, Dept Pathol, Xuzhou, Peoples R China
[6] Kunming Med Univ, Affiliated Hosp 1, Kunming, Peoples R China
[7] Jiangsu Normal Univ, Sch Life Sci, Xuzhou, Peoples R China
[8] Xuzhou Med Univ, Dept Urol, Suqian Affiliated Hosp, Suqian, Peoples R China
[9] Xuzhou Med Univ, Dept Pathol, Suqian Affiliated Hosp, Suqian, Peoples R China
[10] Heilongjiang Prov Hosp, Dept Urol, Harbin, Peoples R China
来源
SCIENTIFIC REPORTS | 2024年 / 14卷 / 01期
基金
中国国家自然科学基金;
关键词
DIAGNOSIS; TA;
D O I
10.1038/s41598-024-66870-9
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We aimed to build a deep learning-based pathomics model to predict the early recurrence of non-muscle-infiltrating bladder cancer (NMIBC) in this work. A total of 147 patients from Xuzhou Central Hospital were enrolled as the training cohort, and 63 patients from Suqian Affiliated Hospital of Xuzhou Medical University were enrolled as the test cohort. Based on two consecutive phases of patch level prediction and WSI-level predictione, we built a pathomics model, with the initial model developed in the training cohort and subjected to transfer learning, and then the test cohort was validated for generalization. The features extracted from the visualization model were used for model interpretation. After migration learning, the area under the receiver operating characteristic curve for the deep learning-based pathomics model in the test cohort was 0.860 (95% CI 0.752-0.969), with good agreement between the migration training cohort and the test cohort in predicting recurrence, and the predicted values matched well with the observed values, with p values of 0.667766 and 0.140233 for the Hosmer-Lemeshow test, respectively. The good clinical application was observed using a decision curve analysis method. We developed a deep learning-based pathomics model showed promising performance in predicting recurrence within one year in NMIBC patients. Including 10 state prediction NMIBC recurrence group pathology features be visualized, which may be used to facilitate personalized management of NMIBC patients to avoid ineffective or unnecessary treatment for the benefit of patients.
引用
收藏
页数:11
相关论文
共 23 条
  • [1] Allard P, 1998, BRIT J UROL, V81, P692
  • [2] Bladder Cancer Incidence and Mortality: A Global Overview and Recent Trends
    Antoni, Sebastien
    Ferlay, Jacques
    Soerjomataram, Isabelle
    Znaor, Ariana
    Jemal, Ahmedin
    Bray, Freddie
    [J]. EUROPEAN UROLOGY, 2017, 71 (01) : 96 - 108
  • [3] Development and interpretation of a pathomics-based model for the prediction of microsatellite instability in Colorectal Cancer
    Cao, Rui
    Yang, Fan
    Ma, Si-Cong
    Liu, Li
    Zhao, Yu
    Li, Yan
    Wu, De-Hua
    Wang, Tongxin
    Lu, Wei-Jia
    Cai, Wei-Jing
    Zhu, Hong-Bo
    Guo, Xue-Jun
    Lu, Yu-Wen
    Kuang, Jun-Jie
    Huan, Wen-Jing
    Tang, Wei-Min
    Huang, Kun
    Huang, Junzhou
    Yao, Jianhua
    Dong, Zhong-Yi
    [J]. THERANOSTICS, 2020, 10 (24): : 11080 - 11091
  • [4] Diagnosis and Treatment of Non-Muscle Invasive Bladder Cancer: AUA/SUO Guideline
    Chang, Sam S.
    Boorjian, Stephen A.
    Chou, Roger
    Clark, Peter E.
    Daneshmand, Siamak
    Konety, Badrinath R.
    Pruthi, Raj
    Quale, Diane Z.
    Ritch, Chad R.
    Seigne, John D.
    Skinner, Eila Curlee
    Smith, Norm D.
    McKiernan, James M.
    [J]. JOURNAL OF UROLOGY, 2016, 196 (04) : 1021 - 1029
  • [5] Classification and mutation prediction from non-small cell lung cancer histopathology images using deep learning
    Coudray, Nicolas
    Ocampo, Paolo Santiago
    Sakellaropoulos, Theodore
    Narula, Navneet
    Snuderl, Matija
    Fenyo, David
    Moreira, Andre L.
    Razavian, Narges
    Tsirigos, Aristotelis
    [J]. NATURE MEDICINE, 2018, 24 (10) : 1559 - +
  • [6] Predicting Nonmuscle Invasive Bladder Cancer Recurrence and Progression in Patients Treated With Bacillus Calmette-Guerin: The CUETO Scoring Model
    Fernandez-Gomez, Jesus
    Madero, Rosario
    Solsona, Eduardo
    Unda, Miguel
    Martinez-Pineiro, Luis
    Gonzalez, Marcelino
    Portillo, Jose
    Ojea, Antonio
    Pertusa, Carlos
    Rodriguez-Molina, Jesus
    Emilio Camacho, Jose
    Rabadan, Mariano
    Astobieta, Ander
    Montesinos, Manuel
    Isorna, Santiago
    Muntanola, Pedro
    Gimeno, Anabel
    Blas, Miguel
    Antonio Martinez-Pineiro, Jose
    [J]. JOURNAL OF UROLOGY, 2009, 182 (05) : 2195 - 2203
  • [7] Deep learning for diagnosis and survival prediction in soft tissue sarcoma
    Foersch, S.
    Eckstein, M.
    Wagner, D-C
    Gach, F.
    Woerl, A-C
    Geiger, J.
    Glasner, C.
    Schelbert, S.
    Schulz, S.
    Porubsky, S.
    Kreft, A.
    Hartmann, A.
    Agaimy, A.
    Roth, W.
    [J]. ANNALS OF ONCOLOGY, 2021, 32 (09) : 1178 - 1187
  • [8] A novel self-learning framework for bladder cancer grading using histopathological images
    Garcia, Gabriel
    Esteve, Anna
    Colomer, Adrian
    Ramos, David
    Naranjo, Valery
    [J]. COMPUTERS IN BIOLOGY AND MEDICINE, 2021, 138
  • [9] Definitions, End Points, and Clinical Trial Designs for Non-Muscle-Invasive Bladder Cancer: Recommendations From the International Bladder Cancer Group
    Kamat, Ashish M.
    Sylvester, Richard J.
    Bohle, Andreas
    Palou, Joan
    Lamm, Donald L.
    Brausi, Maurizio
    Soloway, Mark
    Persad, Raj
    Buckley, Roger
    Colombel, Marc
    Witjes, J. Alfred
    [J]. JOURNAL OF CLINICAL ONCOLOGY, 2016, 34 (16) : 1935 - +
  • [10] Predicting survival from colorectal cancer histology slides using deep learning: A retrospective multicenter study
    Kather, Jakob Nikolas
    Krisam, Johannes
    Charoentong, Pornpimol
    Luedde, Tom
    Herpel, Esther
    Weis, Cleo-Aron
    Gaiser, Timo
    Marx, Alexander
    Valous, Nektarios A.
    Ferber, Dyke
    Jansen, Lina
    Reyes-Aldasoro, Constantino Carlos
    Zoernig, Inka
    Jaeger, Dirk
    Brenner, Hermann
    Chang-Claude, Jenny
    Hoffmeister, Michael
    Halama, Niels
    [J]. PLOS MEDICINE, 2019, 16 (01)